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1. Executive Summary   

I am a cancer researcher and clinician–scientist specialising in the tumour microenvironment, 

immuno-oncology, and translational data science. As a Senior Research Fellow at King’s 

College London, my work focuses on developing AI-enabled approaches for cancer risk 

stratification, early detection, and treatment decision support. I applied for the Churchill 

Fellowship to understand how world-leading centres operationalise artificial intelligence (AI) 

and machine learning (ML) in real healthcare settings, and to identify strategies that could 

meaningfully accelerate responsible AI adoption across the UK, particularly within the NHS 

and cancer research ecosystem. 

In line with these aims, my Fellowship began in the USA (Boston), where I spent time at 

the Dana-Farber Cancer Institute (DFCI) and the Gusev Lab, one of the foremost groups 

in computational cancer genomics. This visit offered direct insight into how advanced ML 

tools such as OncoNPC for cancers of unknown primary (CUP), polygenic risk score 

modelling, and multi-omic integration frameworks are being developed, validated, and 

translated into precision oncology (1). Observing the Gusev Lab’s interdisciplinary culture 

and rigorous methodological standards clarified how AI can support clinical questions in 

oncology, from improving diagnostic certainty to enabling more personalised treatment 

decisions (2). 

I then travelled to Australia, where I undertook a structured placement at the Australian 

Institute for Machine Learning (AIML) and shadowed Professor Lyle J. Palmer, an 

international leader in genetic epidemiology, public-health analytics and medical ML. AIML 

provided a contrasting but complementary perspective to Boston: a mature translational 

ecosystem where AI solutions are codesigned with clinicians, embedded into real workflows, 

and evaluated through national-level data infrastructures and implementation-science 

methods. At AIML, I observed ML tools being applied to imaging, chronic disease prognosis, 

biobank-scale modelling, and public-health platforms each developed through a clinically 

driven, data-ready, interdisciplinary approach (3,4). 

Across both international visits, a consistent set of insights emerged. High impact AI in 

healthcare does not begin with algorithms; it begins with well-defined clinical problems, high 

quality linked datasets, interdisciplinary teams, and governance frameworks that ensure 

fairness, safety, and public trust. Equally important is rigorous external validation and 

thoughtful implementation planning both of which determine whether AI systems succeed in 

real clinical environments. These lessons reaffirmed that the UK’s opportunity lies not only in 

scientific innovation but in building the infrastructure, standards, and workforce necessary to 

translate AI into routine practice. 

 

 

 

 



Key findings from the Fellowship include: 

• AI delivers the greatest value when developed in direct response to clearly 

articulated clinical needs, such as cancer of unknown primary (CUP) classification, 

imaging backlogs, chronic-disease risk prediction or personalised oncology. 

• Data quality, interoperability and linkage are foundational, enabling ML models 

to learn from diverse, representative, and clinically meaningful datasets. 

• Robust evaluation including external and temporal validation, subgroup analysis 

and real-world testing is essential for safe and equitable deployment. 

• Interdisciplinary collaboration between clinicians, data scientists, 

epidemiologists, geneticists and engineers are a prerequisite for translational 

progress. 

• Ethics, fairness, transparency, and patient trust must underpin every stage of AI 

development and implementation, especially in high-stakes fields such as oncology. 

These insights directly strengthen my ongoing research at King’s and my leadership in 

AI-enabled cancer prediction and decision support. This Fellowship has also enabled me to 

secure new international collaborations, apply for competitive AI funding, and present my 

early outputs at the ESMO AI in Oncology Conference, positioning the UK as an active 

contributor in the global AI-oncology landscape. 

This report presents the detailed findings of my visits to Boston and Australia and offers a set 

of strategic recommendations for UK policymakers, NHS organisations, academic 

institutions, clinicians, and AI developers. It outlines how the UK can build a trustworthy, 

clinically driven infrastructure for AI adoption ensuring that emerging technologies genuinely 

improve outcomes for patients and support the future of precision medicine. 

   

 

 

 

 

 

 

 

 



2. Aims of the Fellowship  

The overarching aim of my Churchill Fellowship was to explore how artificial intelligence 

(AI) and machine learning (ML) can be harnessed to improve healthcare delivery, with 

particular emphasis on cancer research, precision medicine, and clinical decision-making. 

Central to this objective was understanding how internationally leading centres design, 

validate and integrate AI-driven tools into real-world clinical workflows, and identifying 

lessons that could be applied within the UK especially the NHS. 

To achieve this, the Fellowship focused on the following aims: 

2.1 Investigate global best practice in AI and ML for healthcare 

This aim centred on examining how world-leading institutions particularly those in Australia 

develop and deploy advanced ML systems across fields such as clinical imaging, genomics, 

population health and risk prediction. It involved understanding the scientific, technical, and 

organisational frameworks that support successful AI adoption. 

2.2 Explore the application of AI/ML to cancer research and precision medicine 

This component focused on assessing how AI is being used to identify cancer-associated 

genes, decode tumour biology, model therapeutic responses, and guide personalised treatment 

decisions. Given my research in tumour immunology and the tumour microenvironment, I 

sought to understand how ML can accelerate discovery and improve patient outcomes. 

2.3 Learn from interdisciplinary teams implementing AI in clinical practice 

A core aim was to observe how clinicians, computer scientists, epidemiologists, engineers, 

and public-health experts collaborate to create AI tools that are clinically meaningful, 

reliable, and safe. This included exploring how interdisciplinary structures operate in 

practice, and how such models might be adapted for UK clinical and research environments. 

2.4 Examine data infrastructure, governance, and ethics frameworks 

This objective focused on understanding how leading centres manage data quality, 

interoperability, patient privacy and model governance elements essential for responsible and 

equitable use of AI. I also examined how institutions address issues such as algorithmic bias, 

fairness, transparency, and public trust. 

2.5 Analyse real-world implementation pathways for AI tools 

A key part of the Fellowship was studying how institutions move from algorithm 

development to clinical integration. This included analysing validation processes, workflow 

redesign, training requirements, evaluation strategies, stakeholder engagement and long-term 

monitoring elements critical for safe and sustainable deployment. 

2.6 Identify actionable lessons for the NHS and UK research ecosystem 

The Fellowship aimed to gather insights that could inform future UK strategies for 

AI-enabled healthcare, including priorities such as national data infrastructure, regulatory 



requirements, workforce skills, research–clinical partnerships and technological adoption 

frameworks. 

2.7 Strengthen international partnerships in AI-based healthcare innovation 

Finally, the Fellowship sought to build lasting relationships with international leaders 

including Professor Lyle J. Palmer and the Australian Institute for Machine Learning (AIML) 

to support ongoing collaboration between global AI research groups and UK academic and 

clinical institutions. 

3. Background and Rationale  

Artificial intelligence (AI) and machine learning (ML) are transforming modern healthcare, 

particularly in oncology, genomics, and clinical diagnostics. These technologies offer 

powerful opportunities for earlier detection, personalised treatment planning and more 

efficient decision-making (5). Yet their translation into real-world clinical settings remains 

uneven. Many promising models never progress beyond research prototypes, while health 

systems struggle with fragmented data infrastructures, unclear implementation pathways and 

variable governance standards. My Churchill Fellowship was established to examine how 

leading international centres address these challenges and to identify lessons that could 

strengthen AI adoption within the UK especially across the NHS. 

My research at King’s College London focuses on the tumour microenvironment, immune 

responses, and the use of advanced computational approaches to analyse large, complex 

biological datasets. With the growth of genomic sequencing, digital pathology and 

multimodal imaging, cancer research has become increasingly data-rich. However, much of 

the analytic potential of these datasets cannot be realised without robust ML methods and the 

system-level capacity to implement them safely. The NHS, with its extensive clinical records 

and national genomic infrastructure, is uniquely positioned to benefit from AI but only if the 

underlying systems, governance, and workforce are equipped to support translation (6). 

Australia was selected as a key site for the Fellowship because of its strong international 

reputation in applied ML, particularly through the AIML. AIML’s focus on clinically 

grounded AI, its integration with public-health agencies and its national data-linkage 

capabilities provides a model for how AI can be embedded into a healthcare system with 

challenges similar to the UK’s (7). Shadowing Professor Lyle J. Palmer a leader in genetic 

epidemiology, chronic-disease modelling and population-scale data science offered a unique 

opportunity to observe how interdisciplinary teams design, evaluate and implement AI tools 

that are both scientifically robust and operationally feasible (8). 

The Boston component of the Fellowship, undertaken at the Dana-Farber Cancer Institute and 

Harvard Medical School, provided a complementary perspective by offering exposure to 

advanced machine-learning approaches in precision oncology, multi-omic data integration 

and the development of state-of-the-art computational tools such as OncoNPC. This 

experience allowed the Fellowship to encompass two contrasting yet highly effective models 

of AI-driven innovation: the Australian model, centred on population-health analytics, 



data-linkage infrastructure and system-level implementation, and the Boston model, 

characterised by its focus on computational genomics, quantitative cancer science and 

translational precision medicine (9). Together, these environments offered a comparative 

framework for understanding how different institutional ecosystems enable the design, 

validation, and deployment of clinically impactful AI technologies. 

These international examples helped me explore three core questions underpinning the 

Fellowship: 

1. What scientific and infrastructural conditions enable successful AI adoption in 

healthcare? 

2. How do leading centres develop, validate, and implement AI tools that are 

clinically meaningful and trustworthy? 

3. What lessons can the UK apply to ensure safe, equitable and scalable integration 

of AI into the NHS? 

The rationale for the Fellowship was further shaped by several urgent needs within UK 

healthcare: 

• Robust implementation pathways: Many UK AI models stall at the 

proof-of-concept stage without clear routes into clinical use. 

• Data quality and interoperability: NHS datasets are extensive but inconsistent, 

limiting model performance and equity. 

• Interdisciplinary capacity: Effective AI requires coordinated input from clinicians, 

data scientists, engineers, ethicists, and implementation expert’s structures still 

developing in the UK. 

• Rising demand for precision oncology: Increasing reliance on genomics, digital 

pathology and predictive tools requires advanced computational infrastructure. 

• Ethical and equitable governance: Public trust depends on transparency, fairness 

assessment, and rigorous oversight across the AI lifecycle. 

By examining how Australia and Boston address these issues through mature data 

ecosystems, interdisciplinary team science and rigorous evaluation frameworks this 

Fellowship aimed to identify practical strategies that can inform UK policy, research 

investment and clinical integration (10,11). 

Ultimately, the rationale for this work rests on a simple premise: AI has the potential to 

improve outcomes, reduce diagnostic delays and support personalised cancer care, but only 

when developed and deployed within systems designed for safety, reproducibility, and equity 

(12). This Fellowship provided the opportunity to study those systems in practice and to 

generate insights that can help the UK realise the full potential of AI-enabled healthcare. 



4. Quantitative Genomics and Machine Learning: Visit to 
the Gusev Lab, Dana-Farber Cancer Institute & Harvard 
Medical School 

4.1. Background and Purpose of the Visit 
As part of my Churchill Fellowship examining the translation of AI and ML into healthcare, I 

visited the laboratory of Dr Alexander (“Sasha”) Gusev at the Dana-Farber Cancer Institute 

and Harvard Medical School. Dr Gusev, a statistical geneticist and Associate Professor of 

Medicine, leads a programme focused on developing computational and ML approaches to 

characterise genetic architecture, tumour biology and therapeutic response in cancer. 

This visit was designed to complement my time in Australia by providing exposure to a 

leading US centre of computational and translational oncology, with a particular emphasis on 

quantitative genetics, multi-omic integration and ML-based predictive modelling. Together, 

the two components of the Fellowship offered contrasting yet complementary perspectives on 

AI innovation: a population-health, system-level model in Australia and a precision-oncology, 

genomics-centred model in Boston. 

The specific aims of the Boston visit were to: 

• Examine how AI/ML is applied in quantitative genetics and cancer-risk research. 

• Learn about emerging predictive-modelling techniques for cancer risk assessment and 

therapy response. 

• Understand strategies for addressing data-quality issues, algorithmic bias and the 

challenges of clinical integration. 

• Observe interdisciplinary collaboration between geneticists, oncologists, data 

scientists and computational biologists. 

• Explore how such approaches could improve diagnostics and patient outcomes in 

settings analogous to the NHS. 

4.2. Overview of Dr Gusev’s Research Programme 

Dr Gusev’s group develops methods at the interface of statistical genetics, cancer genomics 

and ML, with several recurring themes: 

1. Machine learning classifiers for tumour type and origin 

2. Polygenic risk scores (PRS) and germline–somatic interactions 

3. Integrative multi-omics to map causal mechanisms and therapeutic targets 

4. Bias, ancestry and generalisability in genetic and ML models 



 

4.2.1 OncoNPC: ML for Cancers of Unknown Primary 

A central highlight of my visit was the opportunity to study OncoNPC, a machine-learning 

classifier designed to predict the primary site of origin for cancers of unknown primary 

(CUP) a highly challenging diagnostic category representing 3–5% of all malignancies. CUP 

patients often present with metastatic disease, and despite extensive imaging, histopathology 

and immunohistochemistry, the primary tumour site frequently remains undetermined (1). 

Without this information, oncologists must rely on nonspecific therapies, contributing to 

poorer outcomes. 

OncoNPC was developed specifically to address this longstanding diagnostic limitation. 

Trained on more than 36,000 tumours across 22 cancer types and multiple institutions, the 

model uses only routinely available targeted next-generation sequencing (NGS) panels 

(Figure 1). This reliance on standard genomic assays is a major strength, enabling seamless 

adoption within existing laboratory workflows (13). The model identifies subtle genomic 

patterns including somatic mutations, copy-number alterations and mutational signatures that 

remain detectable even in metastatic tissue with ambiguous morphology (14). 

Its performance is notable. In cancers with unknown primaries, OncoNPC achieves 

approximately 80% accuracy overall and around 95% accuracy for high-confidence 

predictions. When applied to 971 CUP patients at Dana-Farber, the model produced 

high-confidence predictions for roughly 41% of cases an unprecedented diagnostic support 

level in this historically uncertain field. Retrospective analyses showed that CUP patients 

who, by chance, received treatments aligned with the model’s predictions experienced 

improved survival outcomes. The tool also more than doubled the number of CUP patients 

eligible for genomic guided targeted therapies (15). 

OncoNPC’s value lies in its ability to augment clinical judgement at points where 

conventional diagnostics reach their limits. By providing a molecularly grounded prediction, 

it supports multidisciplinary discussions and enables tumour-specific treatment pathways. For 

the NHS, which manages substantial CUP caseloads and possesses large-scale genomic 

datasets (e.g., through Genomics England), similar classifiers could substantially improve 

diagnostic certainty and equitable access to targeted therapies. 

Overall, OncoNPC exemplifies clinically anchored, rigorously validated and ethically 

responsible AI qualities central to my Fellowship’s aims and highly relevant to future UK 

innovation. 

 



 

Figure 1: a. Overview of the OncoNPC development process. The classifier—built using an XGBoost framework—was 
trained on 36,465 cancers with known primary (CKP) spanning 22 tumour types sourced from three major cancer 
centres. 
b. Model performance was assessed using an independent held-out test set comprising 7,289 CKP samples, 
enabling evaluation of accuracy and generalisability. 
c. OncoNPC was then applied to 971 cancers of unknown primary (CUP) from a single institution to generate 
predicted primary tumour types. 
d–g. The resulting OncoNPC-defined CUP subgroups were examined for their association with: (d) elevated germline 
cancer risk, (e) actionable somatic alterations with therapeutic relevance, (f) differences in overall survival, 
and (g) key prognostic somatic features. 
h. A final analysis explored treatment-specific outcomes in a subset of CUP patients for whom detailed therapeutic 
data were available, assessing alignment between received therapies and model-predicted tumour origin. 

 

4.2.2 Polygenic Risk Scores and Germline–Somatic Interactions 

Another major theme of Dr Gusev’s programme concerns how inherited genetic 

predisposition quantified using polygenic risk scores (PRS) interacts with somatic mutational 

processes to shape tumour evolution. This work bridges two traditionally distinct domains: 

germline susceptibility and tumour biology. 

The core insight is that cancers emerge from a dynamic interplay between inherited factors 

and acquired mutations. By integrating PRS with somatic mutation patterns, the team 

demonstrates how inherited risk influences which mutational processes become active, 

tumour aggressiveness and ultimately treatment response (16). 

The lab’s findings show that PRS for traits relevant to cancer such as smoking behaviour, 

tanning response, BMI and immune function correlate with specific somatic mutational 

signatures and tumour mutational burden (Figure 2). This suggests that germline variation 

shapes the biological environment in which somatic mutations develop, influencing mutation 

accumulation, pathway disruption and tumour immunogenicity. 

Crucially, the team has shown that inherited variation can modify tumour evolutionary 

pathways. For example, individuals with high PRS for certain cancers may be predisposed to 



DNA-repair deficiencies or environmental exposures that activate specific mutational 

processes. This mechanistic link provides a more comprehensive explanation for 

inter-individual differences in tumour behaviour. 

Integrating PRS with clinical and somatic data has enhanced risk-prediction models, clarified 

survival differences, and helped identify patient subgroups for targeted therapies or 

intensified surveillance. This approach moves oncology closer to genuinely personalised 

prevention and treatment, where inherited and acquired variation are considered together 

(17). 

The implications for the UK are significant. Although the NHS holds world-leading germline 

datasets, integration with somatic sequencing is limited in routine clinical care. The Gusev 

Lab’s work provides a methodological blueprint for combining these domains to improve 

prediction, personalise prevention pathways and refine therapeutic stratification. It also 

underscores the need for multimodal ML models incorporating germline, somatic, clinical 

and microenvironmental features (18). 

This research aligns closely with my own interests in immunology and tumour 

microenvironment and has directly informed the development of integrative modelling 

strategies for UK oncology. 

 

 

Figure 2: a WES of 157 germline samples from 80 UC patients (WCM-UC cohort) b Somatic variants identified through 
EXaCT-1 whole-exome sequencing (WES) pipeline using matched tumor-normal samples. c The DGVar framework for 
the identification of putative deleterious germline variants (pDGVs). d Comparison cohorts: 398 patients from the 
TCGA-BLCA cohort, and 11,035 noncancer subjects from the SPARK non-cancer cohort. e Functional predictions 
using CADD scores, three-dimensional modeling of the effects of pDGVs on protein data bank (PDB) structures and 
somatic LOH analysis f Germline-somatic interactions at the gene and pathway levels. 

4.2.3 Integrative Omics and Causal Mapping in Cancer 

A further major strand of research within Dr Gusev’s laboratory involves developing methods 

to integrate multiple layers of biological data commonly described as multi-omic integration 

to identify causal genes, regulatory pathways, and therapeutic targets across cancer types. The 



lab brings together genome wide- association study (GWAS) summary statistics, expression 

quantitative trait loci (eQTL) data, methylation QTLs, bulk tumour transcriptomics, single 

cell- RNA sequencing, and detailed clinical outcomes (19). By combining these datasets 

within advanced analytical frameworks such as Transcriptome Wide- Association Studies 

(TWAS) and related ML enhanced- pipelines, the team aims to infer not only which genes are 

associated with cancer, but how and why they influence tumour initiation, progression, and 

treatment response. 

Traditional genomic studies often identify hundreds or thousands of variants associated with 

cancer risk, yet translating these findings into biological understanding or therapeutic 

opportunity is difficult. Many risk loci fall in non-coding regions of the genome, and the 

pathways linking inherited variation to tumour behaviour remain unknown. TWAS and 

multi-omic integration address this challenge by leveraging regulatory information such as 

gene expression, chromatin accessibility or methylation patterns to prioritise genes whose 

altered regulation is most likely driving disease mechanisms (20). In other words, these 

approaches move beyond simple statistical association toward causal inference, offering far 

greater insight into the biological processes underlying cancer. 

The Gusev Lab is recognised internationally for developing and refining these integrative 

frameworks. Their work has identified candidate causal genes in breast, prostate, colorectal 

and ovarian cancer by aligning genetic signals with transcriptional changes in tumour tissues. 

By incorporating single cell RNA-seq data, they also capture cell type- specific effects, 

revealing how inherited and acquired- genomic variation shapes distinct cellular 

compartments within the tumour microenvironment including immune populations, stromal 

elements and malignant subclones (21). These insights are particularly relevant to my own 

research interests, as they illustrate how underlying genetic architecture can influence 

immune infiltration, inflammation and the tumour’s ability to respond to therapy. 

Another strength of this integrative approach is its ability to uncover regulatory 

networks rather than isolated genes. Instead of highlighting a single locus, these analyses 

reveal coordinated gene programmes and signalling pathways that govern tumour progression 

or therapeutic resistance. This network level understanding is essential for identifying 

druggable nodes, predicting combination therapy strategies and improving biomarker 

discovery (22). 

Clinically, these methods are beginning to influence precision oncology. By linking inherited 

genetic variation and tumour transcriptional profiles to patient outcomes, the lab can refine 

prognostic models and identify which biological pathways are associated with better or worse 

survival. In several studies, integrating germline and somatic information improved the 

prediction of treatment response, particularly in cancers where immune activity or DNA 

damage repair pathways play a central role (23). This is an area of increasing relevance for 

immunotherapy stratification and outcome prediction. 

The implications of this research for the UK cancer landscape are significant. The NHS and 

UK research institutions generate vast multi-omic datasets through initiatives such as the 

100,000 Genomes Project, Genomics England, UK Biobank, the Cancer Research UK 



Stratified Medicine Programme and NIHR Bio Resource. However, these datasets are often 

analysed in isolation, with limited integration between germline, somatic and transcriptomic 

layers. The approaches pioneered by the Gusev Lab demonstrate how high value biological 

and clinical insights emerge only when these data types are combined. This integration could 

support improved risk prediction, early detection strategies, identification of -high-

risk- individuals, and more precise therapeutic stratification within the NHS. 

Furthermore, this work underscores the importance of incorporating causal inference 

techniques into the development of AI and ML models. Many existing clinical ML models 

operate purely on predictive associations without understanding underlying mechanisms, 

limiting their interpretability and clinical trustworthiness. The multi-omic causal 

mapping- strategies used by the Gusev Lab offer a path toward more interpretable and 

biologically grounded models an approach that aligns well with the UK’s emphasis on 

trustworthy, explainable AI (24). 

4.2.4. Activities During My Visit 

During my time in Dr Gusev’s lab, I: 

• Met with Dr Gusev and his team to discuss ongoing projects, including OncoNPC 

and germline–somatic interaction studies. 

• Attended lab meetings where multi-disciplinary groups (statistical geneticists, 

oncologists, computational biologists) reviewed recent results, troubleshooting model 

performance and interpretation. 

• Observed presentations on model development pipelines, from raw NGS data 

through feature engineering, model training (e.g., gradient boosted trees, deep 

learning), and evaluation.   

• Discussed data challenges such as sample heterogeneity, ancestry representation, 

missingness, batch effects and label uncertainty, especially in CUP.   

• Explored how the lab collaborates with clinical programmes at Dana Farber, 

integrating model outputs into retrospective analyses and exploring prospective 

clinical utility. 

This immersive exposure allowed me to understand not only the scientific outputs, but also 

the culture, workflow and decision-making processes underpinning a high performing 

computational oncology lab. 



 

5. Findings from Dr Gusev Lab 

5.1 Multi-modal Data Integration is Essential for Next-Generation Cancer AI 

A key lesson from the Gusev Lab was the central importance of integrating diverse data types 

when modelling cancer biology. Rather than relying on isolated features, their most effective 

approaches combined germline variation, somatic mutations, mutational signatures, 

transcriptomic patterns and clinical factors within unified analytical frameworks. This 

demonstrated that cancer behaviour cannot be understood through a single biological lens; 

meaningful insights emerge only when inherited risk, acquired mutations, tumour 

transcriptional states and treatment context are considered together. This perspective aligns 

directly with the evolving direction of oncology research, where multi-omic integration is 

becoming indispensable for decoding tumour evolution, immune interactions and treatment 

response. 

5.2 Clinically Anchored Model Development Enhances Impact 

A defining characteristic of the lab’s work was its commitment to designing models around 

clearly articulated clinical problems. Rather than asking what data could predict, the team 

consistently began by identifying questions that matter to oncologists and patients: improving 

tumour classification when diagnosis is uncertain, refining risk stratification by integrating 

germline and somatic information, or identifying which tumours are likely to respond to 

specific therapies. This problem driven approach ensured that computational outputs 

remained tightly aligned with clinical decision-making and avoided the common pitfall of 

building technically impressive models with limited real-world relevance. 

5.3 Addressing Bias and Ensuring Generalisability is a Core Scientific Priority 

The lab foregrounded the challenge of ancestry imbalance and demographic bias in genomic 

and ML research. Many existing datasets disproportionately represent individuals of 
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European ancestry, raising concerns about model performance in other groups. The team 

actively evaluated model behaviour across ancestry groups, explored multi-ancestry statistical 

frameworks and emphasised transparent reporting of cohort composition. This reinforced a 

broader lesson: AI systems intended for clinical use must be developed and tested with 

diversity in mind from the outset. For the NHS serving a population characterised by wide 

genetic, ethnic and social diversity this principle is particularly crucial. 

5.4 Rigorous Validation Must Extend Beyond Accuracy Metrics 

Another key insight was the importance of evaluating models not only statistically but 

also clinically. The Gusev Lab demonstrated a commitment to robust validation strategies, 

including external testing on independent cohorts, evaluation within specific subgroups such 

as CUP patients, and retrospective analyses linking model guided decisions to survival 

outcomes. They were also transparent about the limits of the available data, especially in 

settings like CUP where ground truth labels are inherently uncertain. This approach 

underscores that model performance metrics such as AUC or accuracy are insufficient on 

their own; clinical translation requires evidence that models meaningfully influence patient 

pathways and outcomes. 

5.5 Interdisciplinary Collaboration Enables High Quality Translational Science 

Finally, the visit illustrated how effective translational research relies on strong 

interdisciplinary collaboration. The Gusev Lab brought together oncologists, statistical 

geneticists, ML experts and molecular biologists, each contributing domain specific expertise 

while working toward shared research goals. Observing the interaction between these 

disciplines highlighted how complex questions such as linking germline risk to somatic 

patterns or predicting therapeutic response can only be addressed through sustained cross 

specialty communication. This model of integrated team science is essential for developing 

AI tools that are biologically coherent, methodologically rigorous and clinically actionable. 
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6. Implications for UK Cancer Research, NHS 

Genomics, and AI Deployment 

6.1 Strengthening My Scientific Perspective 

My visit to the Gusev Lab significantly expanded my understanding of how advanced 

computational approaches can address persistent diagnostic uncertainties in oncology. 

Observing the development and clinical evaluation of tools such as OncoNPC demonstrated 

that ML can generate meaningful insight from data sources already embedded in routine 

cancer care. This reinforced a crucial shift in perspective: AI should not be treated as an 

add‑on to existing diagnostics, but as a means of extracting biological and clinical signal that 

conventional methods are unable to capture. For complex problems such as cancers of 

unknown primary (CUP), this exposure clarified not only the scientific potential of AI, but 

the practical ways in which multi‑omics, model‑based reasoning can improve clinical 

decision‑making. 

6.2 Relevance to UK Cancer Research and NHS Genomics 

The visit highlighted clear opportunities for applying comparable approaches within the UK. 

The NHS oversees one of the richest national genomic infrastructures in the world, and 

initiatives such as Genomics England, the NHS Genomic Medicine Service and UK Biobank 

collectively hold the type of germline, somatic and clinical data that made the Boston 

research possible. What the UK currently lacks is not data but integration: datasets often sit in 

isolation, analysed within discipline‑specific silos. The Gusev Lab’s work provided concrete 

methodological templates for combining these resources to build more biologically coherent 

models whether for refining risk stratification, strengthening early detection efforts or 

improving the interpretation of ambiguous or rare cancers. This has direct relevance to the 

NHS, where CUP and diagnostically complex cases are routinely managed and where 

improved molecular classification could meaningfully change patient pathways. 

6.3 Implications for UK AI and ML Development 

A further lesson concerns the standards required for responsible AI deployment within 

healthcare. The Gusev Lab’s emphasis on transparency, ancestry‑aware modelling, rigorous 

validation and clinically anchored research offers a framework that the UK can adopt as it 

accelerates AI integration. Their work illustrated the necessity of evaluating model 

performance across diverse patient groups and producing explicit documentation of cohort 

composition practices that are essential for ensuring equitable benefit in a diverse NHS 

population. The retrospective survival analyses used to evaluate OncoNPC also set an 

important precedent: AI models must be assessed not merely by accuracy metrics but by their 

ability to influence meaningful clinical outcomes. These principles align closely with the 

UK’s ambitions for trustworthy, safe and clinically relevant AI and should inform national 

guidelines, regulatory frameworks and future research investments. 



6.4 Personal Research Opportunities and Future Collaboration 

The visit also clarified how my own research can evolve considering the approaches observed 

in Boston. My interests in tumour microenvironment, immunology and risk stratification 

intersect naturally with the Gusev Lab’s strengths in quantitative genetics and causal 

modelling. There are clear opportunities for collaborative research, joint method‑development 

and possible student exchange between King’s College London and Dana‑Farber. These 

interactions could support the development of UK‑specific models that integrate germline 

predisposition, somatic evolution and immune dynamics approaches that could meaningfully 

contribute to improving risk prediction and treatment stratification within the NHS. 

Summary 

Overall, my visit to the Gusev Lab reinforced that AI and ML, when embedded within 

rigorous biological science and guided by clinical priorities, hold genuine potential to 

improve cancer care. The lessons learned on data integration, fairness, validation, and 

interdisciplinary teamwork will directly inform my ongoing work and shape my contribution 

to the responsible advancement of AI within UK oncology. 

. 

7. Recommendations for the UK Based on Learning 

from Dana‑Farber Cancer Institute  

7.1. Develop UK‑Specific AI Classifiers for Cancers of Unknown 

Primary (CUP) 

The success of OncoNPC at Dana‑Farber shows that existing NGS panels already used in 

routine oncology contain enough molecular signal to meaningfully guide classification and 

treatment of CUP. 

Specific integrations for the UK 

• Genomics England’s WGS & targeted panels → Train UK‑specific CUP classifiers 

using real NHS tumour and matched‑normal sequencing data. 

• NHS Genomic Laboratory Hubs (GLHs) → Embed an “AI CUP report” alongside 

the standard pathology and genomic reports delivered to MDTs. 

• Royal Marsden, Christie, UCLH CUP MDTs → Pilot integration of AI‑generated 

primary‑site predictions into real decision‑making. 

Example: 

A CUP patient whose tumour sequencing indicates a “high‑confidence pancreatic‑like 

signature” could be considered for pancreatic cancer‑specific regimens rather than empiric 

chemotherapy. 



Why these matters: 

CUP patients often get no molecularly guided treatment. AI could increase trial eligibility, 

improve targeted therapy access, and reduce diagnostic uncertainty. 

 

7.2. Integrate Germline–Somatic Modelling into UK Risk Prediction 

and Treatment Planning 

Dana‑Farber demonstrates that polygenic risk scores (PRS) can meaningfully interact with 

somatic mutation patterns to shape tumour behaviour, immune response, and survival. 

Specific integrations: 

• NHS Breast Screening Programme → Incorporate breast cancer PRS + 

mammography findings + somatic ctDNA profiles to create personalised screening 

intervals. 

• UK Biobank + Genomics England + CRUK TRACERx → Build integrative 

models that link germline PRS to tumour evolution trajectories. 

• Clinical immunotherapy decisions → Use germline immune‑related PRS to stratify 

likely responders to checkpoint inhibitors. 

Example: 

A patient with high inherited risk of melanoma and UV‑related mutational signatures could 

be prioritised for early dermatology surveillance and immunotherapy eligibility discussions. 

Why this matters: 

The UK has the data to do this (Biobank, GEL) but lacks integration pipelines. 
Dana‑Farber provides the proof‑of‑concept pathway. 

7.3. Establish a National UK Multi‑Omic Pipeline for Causal Gene 

Discovery 

Dana‑Farber’s TWAS and multi‑omic workflows identify causal genes, not just associations. 

Specific integrations for the UK: 

• CRUK-funded centres → Use TWAS to prioritise causal genes in lung, breast and 

colorectal cancer using GEL tumour/normal and clinical metadata. 

• NIHR Biomedical Research Centres → Host dedicated multi‑omic computational 

teams to integrate eQTL, methylation, bulk RNA‑seq, single‑cell RNA‑seq and 

clinical outcomes. 

• NHS GLHs → Add TWAS‑derived gene prioritisation to genomic reports to identify 

druggable targets. 

TWAS analysis might identify a non‑coding variant regulating expression of a DNA-repair 

gene driving platinum resistance in ovarian cancer → informing clinical trial stratification. 



Why this matters: 

This moves UK oncology AI from “predictive associations” to mechanistic insight, enabling 

targeted drug development. 

7.4. Implement Ancestry‑Aware Model Development Across All NHS 

AI Tools 

Dana‑Farber explicitly evaluates AI performance across ancestry groups. 

Specific UK applications: 

• Genomics England → Stratify AI model performance by ancestry for every AI tool 

developed within the GMS framework. 

• JCVI & NHS Race and Health Observatory → Review ancestry bias in models 

deployed in cancer pathways. 

• Training datasets for CUP, lung cancer, prostate cancer → Ensure Black and 

South Asian groups are adequately represented. 

In prostate cancer, PRS models trained solely on European ancestry underperform in men of 

African ancestry. Dana‑Farber’s multi‑ancestry fine‑mapping strategies could be applied to 

NIHR/UK Biobank datasets. 

Why this matters: 

The NHS serves one of the world’s most diverse populations; AI must work equitably. 

 

7.5. Adopt Dana‑Farber‑Style Validation Frameworks for NHS 

Cancer AI 

Dana‑Farber’s approach goes beyond accuracy and includes real clinical impact. 

Specific UK integrations: 

• MHRA & NHS AI Lab → Mandate external validation and outcome‑based 

evaluation before approval. 

• NHS sites deploying AI → Require temporal validation using real‑world hospital 

data, not only test‑set accuracy. 

• CRUK clinical trials units → Incorporate AI‑guided endpoints (e.g., treatment–

model concordance). 

A CUP classifier must show that patients receiving treatment aligned with its prediction have 

better survival, as proven in the OncoNPC study NOT just that the model predicts well. 

Why this matters: 

Most UK AI tools fail due to insufficient validation. Dana‑Farber shows what gold standard 

validation looks like. 

 



7.6. Build UK Interdisciplinary Cancer AI Teams Modelled on 

Dana‑Farber’s Structure 

Dana‑Farber’s success comes from teams where clinicians, geneticists, ML researchers and 

molecular biologists work together daily. 

Specific UK integrations: 

• King’s Health Partners, Manchester Cancer Research Centre, Oxford Cancer 

Centre → Establish interdisciplinary “AI in Oncology Units”. 

• Joint CRUK–EPSRC centres → Embed cancer biologists and oncologists directly 

into ML research groups. 

• NIHR training programmes → Fund joint PhD/MD projects co-supervised by 

oncologists + computational geneticists. 

A lung cancer AI project should include a thoracic oncologist, respiratory pathologist, 

statistical geneticist, ML scientist, implementation scientist, and ethical lead. 

Why these matters: 

The UK currently builds AI in silos; this model does not translate clinically. 

7.7. Prioritise Clinically Explainable and Workflow‑Integrated AI 

Tools 

Dana‑Farber emphasises explainability and usability for oncologists. 

Specific integrations: 

• NHS MDT software (e.g., Info Flex, MOSAIQ) → Integrate AI outputs with clear 

rationales (“prediction driven by mutational signature SBS4 and KRAS G12D”). 

• Oncology training programmes → Establish AI literacy modules for medical 

oncology trainees. 

• EHR vendors (Cerner, Epic) → Build plug‑ins that display AI insights directly 

within workflow, not separate dashboards. 

Example: 

An AI‑generated CUP origin prediction should show: 

• confidence level 

• key genomic features driving the prediction 

• treatment pathways associated with that primary 

Why these matters: 

These builds trust and reduce cognitive burden crucial for adoption. 



8. Translational AI in Practice: Visit to the AIML and Professor Lyle 

J. Palmer’s Team 

8.1. Background and Purpose of the Visit  

During my time in Adelaide, I visited the AIML at the University of Adelaide and shadowed 

Professor Lyle J. Palmer and his multidisciplinary research team. AIML is one of Australia’s 

leading centres for applied ML, bringing together computer scientists, epidemiologists, 

clinicians, and public-health researchers to develop AI solutions that address real-world 

challenges in healthcare.  

Professor Palmer, a Professor of Genetic Epidemiology within the School of Public Health, 

and a senior ML researcher at AIML, works at the intersection of computational science and 

population health. His research spans translational bioscience, AI applications in medicine, 

genetic epidemiology of complex diseases, population biobanking, and life-course 

epidemiology. He also leads a clinical and technical AI research unit in Adelaide and serves 

as Leader of the Precision Healthcare Flagship for the Australian Alliance for AI in 

Healthcare, positioning his work across the key domains of research, clinical translation, and 

health-policy development.  

The purpose of my visit was to understand how AIML and Professor Palmer’s team design, 

evaluate and implement ML tools that are clinically relevant, ethically grounded, and 

operationally feasible in real healthcare environments. Specifically, I sought to explore how 

AIML integrates population-scale datasets, clinical expertise, and implementation science to 

create AI systems that improve diagnostic accuracy, support risk prediction, and optimise care 

pathways. Learning from this mature innovation ecosystem was central to my Fellowship 

aim: to gather evidence-based insights that can help guide AI-enabled healthcare 

transformation in the UK, particularly within the NHS.  

  

8.2. Overview of Professor Palmer’s ML Work  

Professor Lyle Palmer’s contributions sit at the intersection of genetic epidemiology, 

population health, and applied ML. During my placement at AIML, I observed how his 

programme integrates rigorous data science, clinical collaboration, and public-health 

infrastructure to address clearly defined health challenges. His work demonstrates how AI 

can be responsibly deployed when built upon strong methodological foundations and genuine 

clinical need. The following subsections summarise the key themes of his work, what I 

directly observed, and why these insights matter for UK healthcare.  



  

 

8.2.1 Medical ML and Imaging  

A significant part of Professor Palmer’s portfolio involves applying ML to imaging tasks 

within rheumatology, orthopaedics, and emergency medicine. While shadowing the team, I 

observed how AIML develops models for targeted, high-value clinical questions, such as 

radiographic scoring in rheumatoid arthritis. Clinicians explained that existing scoring 

systems are labour-intensive and inconsistent, particularly in early disease. AIML’s 

deep-learning models, trained in close collaboration with rheumatologists and radiologists, 

were able to identify subtle erosions and quantify joint damage with far greater consistency. 

This work exemplified a deliberate strategy: AI is designed to augment clinical accuracy 

rather than replace human judgement.  

The broader AIML ecosystem has also demonstrated radiologist-level performance for 

hip-fracture detection on plain radiographs an area where diagnostic delay has direct 

consequences for morbidity. Importantly, these tools were developed with explicit attention to 

workflow integration, including how outputs would be presented to clinicians and validated 

in real settings.  

Relevance to the UK:  

The NHS faces severe radiology workforce shortages and growing imaging backlogs. The 

AIML model illustrates how targeted imaging AI focused on narrow, clinically relevant tasks 

can enhance consistency, speed, and triage efficiency. It highlights that UK deployment 

should begin with task-specific, workflow-embedded models, rather than broad, fully 

automated diagnostic ambitions.  

  

8.2.2 Predictive Modelling for Chronic Disease  

Another major theme in Palmer’s work is the development and evaluation of predictive 

models for chronic conditions. His systematic review in The Lancet Digital Health which I 

reviewed during my visit provides one of the most rigorous assessments of ML prognostic 
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models for COPD. The review highlighted widespread weaknesses in published models, 

including insufficient external validation, unrepresentative datasets, and methodological 

opacity. Discussions with Palmer’s team emphasised that many models fail not because the 

algorithms are flawed, but because the underlying evaluation is inadequate.  

In follow-on projects, AIML researchers apply stricter standards by subjecting models to 

external, temporal and subgroup validation, ensuring that predictions remain reliable across 

populations and over time. This methodological discipline was evident in their work on 

musculoskeletal disease, chronic pancreatitis and mental health conditions characterised by 

heterogeneous trajectories where reliable prediction could meaningfully improve care 

planning.  

Relevance to the UK:  

Many NHS predictive tools used for deterioration, readmission or risk stratification have 

struggled with generalisability. The AIML approach demonstrates that robust validation and 

transparent reporting are prerequisites for clinical trust and safe deployment. For the UK, this 

underscores the need to embed formal evaluation frameworks into national AI governance.  

  

8.2.3 Population Health, Biobanks and Polygenic / Risk Modelling  

Professor Palmer’s foundational expertise in genetic epidemiology continues to shape his 

current work on risk modelling. During our discussions, he highlighted how linking genomic, 

phenotypic, and clinical data enables a deeper understanding of disease pathways across the 

life course. His team’s use of biobank-scale datasets illustrated how polygenic risk scores 

(PRS) can be integrated with environmental exposures and clinical biomarkers to create 

interpretable models that explain why disease develops, not merely predict whether it will.  

This work provides a conceptual bridge between population health and precision medicine. 

Models that combine inherited and acquired risk factors were shown to improve early 

detection strategies and identify subgroups who may benefit from tailored screening or 

lifestyle interventions.  

Relevance to the UK:  

The UK hosts two unparalleled data assets UK Biobank and Genomics England but lacks the 

integrated pipelines required to merge these datasets with NHS clinical records. Palmer’s 

work provides a blueprint for how the UK could develop national, multi-layered 

risk-prediction frameworks to support prevention, personalised screening, and improved 

allocation of healthcare resources.  

  

8.2.4 Public Health Data Platforms and Precision Healthcare  

A distinctive feature of Palmer’s recent research is his contribution to public-health analytics 

platforms capable of supporting real-time modelling across large populations. I reviewed his 

contribution to a Nature Medicine correspondence describing how public-health bodies, 



data-linkage units and AI specialists co-designed a platform in response to COVID-19. What 

stood out was not only the technical capability but the governance model: the platform was 

built around transparent data stewardship, interoperability, and public-health accountability.  

While at AIML, I learned how these platforms rely on strong national data-linkage 

infrastructure something Australia has invested in for over a decade. This enables 

longitudinal models of chronic disease, dynamic risk surveillance and system-wide predictive 

analytics.  

Relevance to the UK:  

NHS data remains fragmented across Trusts, EHR systems and regional coding practices. 

Palmer’s work demonstrates that AI effectiveness is downstream of data infrastructure. For 

the UK to achieve meaningful AI innovation, investment must prioritise national data linkage, 

unified coding standards and platform-level governance rather than isolated algorithm 

development.  

  

8.2.5 Clinical Collaborations and Disease-Specific AI  

Across disease-specific projects, I observed a consistent methodological philosophy: AI is 

developed through deep clinical co-design. For example, in the Crohn’s Colitis Cure project, 

gastroenterologists guided model objectives, feature selection and interface design. The 

resulting tool a web-based AI platform for inflammatory bowel disease was built to offer 

interpretable, actionable insights tailored to real clinical workflows.  

Similar principles shaped AIML’s work in dental and musculoskeletal health, where models 

were chosen not only for accuracy but for their interpretability and clinical usability. The 

iterative feedback cycles between clinicians and data scientists were central to the project’s 

success.  

Relevance to the UK:  

Numerous AI projects in the UK fail to translate because they are developed in technical 

silos. AIML provides clear evidence that sustained collaboration, clinician-centred design, 

and attention to workflow realities are key determinants of adoption. The NHS would benefit 

from embedding joint clinical–data science teams to ensure that AI tools solve problems 

clinicians genuinely face.  

  

8.3 Fellowship Activities  

8.3.1 Visit to the AIML 

The AIML, based at the University of Adelaide, is internationally recognised as one of the 

leading centres for applied ML research. Its integration within a research-intensive university 

and its close partnerships with hospitals, public-health bodies and government agencies create 

an environment uniquely suited to translating technical innovation into real-world impact. 

This made AIML a strategically important site for my Fellowship, particularly given its 



sustained emphasis on developing ML solutions addressing concrete clinical and 

health-system challenges.  

Unlike many AI research centres that prioritise methodological or algorithmic novelty, 

AIML’s medical ML programme focuses on clinically grounded applications across 

diagnostic imaging, chronic disease prediction, genomics, computational pathology and 

population-health analytics. My placement enabled me to examine not only the scientific 

processes behind these projects, but also the organisational structures data governance, 

interdisciplinary collaboration, validation frameworks, and implementation strategies that 

underpin successful translation into healthcare practice.  

My time at AIML consisted of participation in group meetings, research seminars, 

project-planning discussions, and individual interviews with researchers and clinicians. 

Through these engagements, I gained insight into ongoing projects spanning oncology, 

inflammatory bowel disease, rheumatology, musculoskeletal disorders, chronic respiratory 

disease and public-health modelling. What emerged was a mature research ecosystem in 

which ML scientists, clinicians, epidemiologists and engineers work seamlessly together. 

This environment demonstrated how technical expertise, clinical knowledge and 

implementation science must coexist to produce AI systems that are robust, clinically 

interpretable and operationally feasible.  

  

8.4 Shadowing Professor Lyle J. Palmer and His Team  

A central component of the Fellowship was the opportunity to shadow Professor Lyle J. 

Palmer, a leading figure in genetic epidemiology, population-health analytics and applied 

ML. His research portfolio spanning biobanking, genomic epidemiology, chronic disease 

modelling, and AI-enabled precision healthcare places his group at the intersection of 

technical innovation and practical implementation. Observing his team provided valuable 

insight into how interdisciplinary structures can support high-quality, clinically relevant AI 

research.  

8.4.1 Research Orientation and Team Structure  

Professor Palmer’s team operates across several interconnected domains:  

• Deep-learning methods for clinical imaging, particularly musculoskeletal and 

rheumatological conditions.  

• Predictive modelling for chronic diseases, including COPD, rheumatoid arthritis and 

inflammatory bowel disease.  

• Genomic and phenotypic modelling, integrating genetic, clinical and environmental 

risk factors.  

• Public-health analytics and population-scale modelling, including real-time 

surveillance platforms.  



• Data linkage, harmonisation and quality assurance, enabling the integration of large 

and heterogeneous datasets.  

• Ethical AI practice, with explicit focus on transparency, fairness and model 

explainability.  

The group’s working style is highly interdisciplinary. Project meetings routinely involved 

clinicians, epidemiologists, statisticians, computational scientists and implementation 

specialists. This ensured that each project benefitted from simultaneous input on clinical 

relevance, methodological robustness, computational feasibility and future deployment 

considerations. The result was a model of practice in which no discipline dominated; rather, 

progress depended on continuous negotiation between clinical needs and technical 

possibilities.  

 

Special thanks to Prof Lyle Palmer for welcoming me to his lab and giving me the 

opportunity to observe various projects from ethical AI to deep learning methods in clinical 

imaging. 

 

 

 



8.4.2 Key Projects Observed and Their Implications  

Radiographic Scoring in Rheumatoid Arthritis  

I observed the development of deep-learning models designed to automate radiographic 

scoring in rheumatoid arthritis. Traditional scoring is labour-intensive and prone to 

inter-observer variation, especially in early disease where erosive changes are subtle. AIML’s 

convolutional neural network demonstrated the ability to identify early joint damage that 

clinicians may overlook (25,26).  

Implications:  

• Clinical benefit: earlier detection enables timelier escalation to disease-modifying 

therapies, which can prevent irreversible disability.  

• Workflow benefit: automated scoring reduces waiting times and supports more 

consistent decision-making across sites.  

• Relevance to the UK: with significant variation in rheumatology imaging capacity 

across the NHS, such tools could promote greater diagnostic equity and efficiency.  

  

Predictive Modelling for COPD  

I engaged with work stemming from Professor Palmer’s meta-analysis of ML models for 

COPD prognosis. Discussions with the research team highlighted the substantial impact that 

cohort selection, coding inconsistency and missingness have on model performance. A model 

that performed well internally failed entirely when tested on a neighbouring regional cohort 

(27,28).  

Implications:  

• Generalisation risk is the greatest barrier to clinical adoption.  

• External and temporal validation are indispensable for NHS deployment.  

• Poor data quality, rather than algorithm choice, is the primary cause of model failure 

in real-world settings.  

Given the NHS interest in deterioration and readmission prediction tools, this learning 

emphasises the need for rigorous evaluation frameworks before clinical implementation.  

  

Public-Health Analytics and Population-Level Modelling  

I also examined work on a public-health data analytics platform co-designed with state 

agencies for real-time modelling and surveillance. One demonstration showed how the 

system predicted ICU demand several days in advance during COVID-19 waves, enabling 

earlier operational planning.  



Implications:  

• Population-level AI is only possible with linked, interoperable data infrastructure.  

• Australia’s national approach to data linkage offers a model for potential UK 

development.  

• The work illustrates that the bottleneck in public-health AI is governance and 

infrastructure, not algorithmic capability.  

  

Inflammatory Bowel Disease Decision-Support Tools  

A further project involved ML models predicting IBD flares, treatment responses and 

complications. Clinicians highlighted how such models could help stabilise variable disease 

trajectories by enabling earlier intervention.  

Implications:  

• Predictive tools shift care from reactive to proactive.   

• Interpretability was key to clinician acceptance; the model’s outputs aligned with 

known risk factors.  

• Within the UK, where emergency IBD admissions remain high, similar tools could 

support more personalised pathways.   

8.4.3 Methodological Principles Observed  

Several methodological principles were evident across Professor Palmer’s projects:  

Data readiness as the foundation of effective AI  

Up to 70% of project time was dedicated to cleaning, harmonising and validating data.  

Implication: AI in the NHS cannot progress without significant investment in high-quality, 

interoperable data infrastructure.  

Clinical co-design from project inception  

Clinicians shaped research questions, model specification and evaluation criteria.  

Implication: clinician involvement is essential for trust, relevance and adoption (29).  

Multidimensional validation as a requirement, not an aspiration  

Internal, external, temporal and subgroup validation were treated as separate steps.  

Implication: this approach reduces bias, improves generalisability and ensures equity across 

diverse populations.  

Deployment and workflow integration treated as scientific work  

User-testing, workflow mapping and post-deployment monitoring were integral to the 

research process (30).  



Implication: success depends not only on model performance but on how well the tool fits 

into clinical practice.  

Ethics, fairness and transparency embedded throughout  

Bias testing and model-explainability strategies were standard components of development.  

Implication: sustained public trust requires ethical governance at every stage of the AI 

lifecycle.  

 

8.4.4 Cross-Cutting Themes Emerging from the Visit  

Several themes recurred throughout my time at AIML:  

1 High-quality data is the primary determinant of AI success  

Projects succeeded when supported by complete, harmonised and well-curated datasets.  

Implication: UK health data remain fragmented; AI will not scale without national-level 

investment in interoperability.  

2 Clinical relevance is more important than technical novelty  

Successful projects were those grounded in clinician-defined needs.  

Implication: the UK must avoid “technology-driven” AI and prioritise co-production with 

clinicians.  

3 Interdisciplinary teams accelerate translation  

Clinicians, engineers and epidemiologists collaboratively shaped projects from the outset.  

Implication: similar interdisciplinary models are needed across UK institutions.  

4 Implementation science is integral to AI adoption  

Projects were designed with deployment in mind, not as an afterthought.  

Implication: the NHS must invest in implementation-science capacity to support digital 

transformation.  

5 Ethics, equity and governance underpin trustworthy AI  

Bias assessments and transparency documentation were routine.  

Implication: governance must be embedded, not optional.  

6 Evaluation extends beyond accuracy metrics  

Success was measured by usability, workflow fit, equity impact and real-world performance.  

Implication: UK evaluation frameworks must adopt broader measures of clinical utility.  

 



8.4.5 Reflections on the Australian Context  

Australia proved an excellent environment for learning about translational AI. The healthcare 

challenges facing Australia closely resemble those in the UK, including rising chronic-disease 

prevalence and workforce constraints. Yet Australia’s investment in national data linkage, 

structured interdisciplinary collaboration and applied AI hubs such as AIML provides 

valuable insights for the UK’s future digital-health strategy. The combination of 

methodological rigour, clinical partnership and system-level thinking offers a compelling 

model for the NHS as it seeks to embed AI safely and effectively across clinical pathways.  

I had the opportunity to present my findings and key observation from AIML visit at weekly 

seminar at AIML. 

9. Findings from the AIML learning  

9.1 Data Readiness as the Foundation of Effective AI  

One of the strongest findings from my time at AIML was the overwhelming importance 

placed on data quality, completeness and interoperability. Almost every project meeting 

began not with algorithm design but with detailed reviews of data harmonisation, linkage 

procedures, and validation pipelines. In a COPD prognostic modelling project, for example, 

the research team spent several weeks reconciling inconsistencies between GP records, 

hospital admission datasets and spirometry data stored in a legacy respiratory system. 

Seemingly minor discrepancies such as variation in coding for smoking status, or differences 

in how comorbidities were recorded across hospitals had meaningful downstream effects on 

model performance. The team demonstrated how an initially “high-performing” model 



deteriorated significantly when applied to a dataset from a neighbouring health service, 

purely due to coding inconsistencies and missing patterns. This highlighted that robust AI is 

not simply a function of better algorithms but of high-quality data infrastructure built on 

systematic curation and standardisation.  

So what does this mean for the UK?  

The NHS holds one of the world’s richest health-data resources, yet fragmentation between 

Trusts, inconsistent coding practices and limited interoperability prevent its full utilisation. 

AIML’s approach demonstrated that without sustained investment in data engineering data 

linkage, standardised pipelines, metadata quality checks AI deployment will remain restricted 

to isolated pilots with no realistic path to scale. This lesson is directly relevant to national 

initiatives such as the Federated Data Platform and NHS AI Lab evaluation programmes: if 

data foundations are not strengthened, even the best models will underperform or risk harm 

when deployed across diverse UK populations.  

  

9.2 Clinical-Problem-First Approach Drives Adoption  

A defining feature of AIML’s medical research portfolio was its insistence that all AI work 

begin with a clinically articulated problem, not a technological opportunity. Projects were 

initiated only once clinicians had clearly defined a bottleneck within their workflow. This was 

exemplified in the rheumatoid arthritis radiographic scoring project. Rheumatologists 

explained that early erosive changes critical for treatment escalation were difficult to detect 

consistently and contributed to variation in patient management. AIML designed a 

deep-learning model specifically to address this task, rather than attempting a broader, less 

clinically anchored diagnostic tool. The precision of the problem definition shaped every 

stage of development, from image pre-processing to model output design, ensuring that the 

tool aligned with the existing PACS workflow and Ritchie scoring system familiar to 

clinicians.  

A similar process was evident in AIML’s inflammatory bowel disease (IBD) predictive tools. 

Clinicians expressed concern about unpredictable flare patterns and the resulting emergency 

admissions. The team developed prognostic models that not only predicted flare risk but 

presented risk scores in a way that clinicians felt reflected meaningful shifts in disease 

trajectory. These examples reinforced that clinically led prioritisation results in tools that 

clinicians trust and integrate into practice because they address real frustrations and unmet 

needs.  

So what does this mean for the UK?  

Many NHS AI pilots fail because technology teams define the problem rather than clinicians. 

AIML’s model shows that clinician ownership from the outset is essential to produce tools 

that are adopted, not abandoned. For NHS programmes aiming to introduce AI decision 

support whether for imaging, triage, chronic-disease management or genomics embedding 

clinical partners in project design is not optional but foundational.  

  



9.3 Rigorous Evaluation and External Validation Are Essential  

AIML’s commitment to evaluation exceeded typical academic practice, treating validation as 

a multi-stage scientific process akin to clinical trial methodology. In discussions around a 

COPD prediction model, the team demonstrated how internal validation alone produced 

deceptively high performance. However, when the model was applied to an external cohort 

from a neighbouring region, accuracy deteriorated sharply. Through a structured evaluation 

process including external validation, temporal validation across different years, and 

subgroup analysis the team identified why the model failed: differences in local coding 

practices, variations in patient socioeconomic profiles, and different spirometry calibration 

procedures.  

Crucially, AIML did not treat this finding as a failure but as an essential diagnostic step. Such 

rigorous evaluation enabled the team to recalibrate the model, refine inclusion criteria, and 

identify where further data engineering was required. The level of scrutiny extended to equity 

considerations: performance was routinely stratified by demographic factors such as age and 

comorbidity load to identify unintended biases early in development.  

So what does this mean for the UK?  

Many AI tools entering NHS clinical trials or procurement pipelines remain inadequately 

validated beyond their development cohort. AIML’s approach highlighted that without 

external and temporal validation, AI models may perform unpredictably when applied to new 

settings, risking inequitable or unsafe outcomes. The UK’s adoption of AI assurance 

frameworks must include mandatory multi-layered validation to avoid real-world 

performance collapse.  

  

9.4 Interdisciplinary Collaboration Is Critical for Translation  

Another striking observation from AIML was the depth of interdisciplinary collaboration. 

Project meetings routinely brought together clinicians, epidemiologists, ML researchers, 

statisticians, geneticists, software engineers and implementation scientists. During an IBD 

modelling session, for example, a gastroenterologist defined the clinical meaning of flare 

events, a statistician interrogated confounders and model assumptions, a data scientist 

analysed missingness structures in biomarker datasets, and an implementation specialist 

assessed whether the model outputs could realistically be integrated into clinic workflows. 

The design decisions reflected the collective input of all stakeholders rather than any single 

discipline.  

This interdisciplinary model ensured that tools remained clinically grounded, 

methodologically robust and practically deployable. It also removed disciplinary blind spots 

that often undermine AI translation such as clinicians underestimating data limitations or 

technical teams overlooking workflow constraints.  

So what does this mean for the UK?  

Many NHS AI initiatives are limited by siloed organisational structures. Technical teams 



often work separately from clinical teams, and implementation staff are brought in only at the 

end of a project. AIML showed how interdisciplinary alignment must exist throughout the 

project lifecycle. Establishing cross-functional AI hubs within the NHS combining clinical, 

data-science, informatics, governance and implementation expertise would dramatically 

increase the likelihood of sustainable adoption.  

  

9.5 Implementation Science Is a Core Scientific Discipline  

AIML demonstrated that deployment is not something that happens after a model is built; 

rather, implementation is treated as an integral part of scientific design. For example, during 

the pilot of the rheumatoid arthritis scoring tool, user-testing sessions revealed that 

radiologists preferred confidence-interval outputs rather than binary classifications. Workflow 

mapping identified points where the tool could reduce reporting time without increasing 

cognitive burden. Training materials were iteratively adapted after observing how junior 

clinicians interpreted the model’s heatmaps. Finally, model-drift monitoring procedures were 

built into the deployment pipeline to ensure the system remained reliable over time.  

These activities were not framed as auxiliary tasks they were central to the research process, 

and outcomes from implementation testing were presented alongside model-performance 

results in project meetings.  

So what does this mean for the UK?  

Many AI deployments in the NHS fail because tools are introduced without sufficient 

workflow redesign, training or monitoring. AIML’s example shows that successful adoption 

requires dedicated implementation-science expertise, resourced over the long term. Without 

this, even highly accurate tools can impede workflows or fail to gain clinician trust.  

  

9.6 Ethics, Fairness and Transparency Are Embedded Throughout the Pipeline  

Finally, AIML’s development pipelines included explicit steps for fairness testing, 

transparency documentation and ethical justification. In the rheumatoid arthritis model, early 

results revealed reduced performance in older patients with existing joint deformities. Rather 

than suppressing this limitation, the team revisited the training dataset to correct 

under-representation, adjusted pre-processing procedures, and openly documented the 

residual bias. Fairness analyses were treated as scientific findings, not compliance exercises. 

Discussions frequently touched on patient trust, model explainability and responsible use of 

predictive outputs.  

So what does this mean for the UK?  

Public confidence in NHS AI will depend on transparent communication of risks, limitations 

and fairness assessments. AIML demonstrated that embedding ethical scrutiny throughout 

model development not only at approval stages is essential for safe, equitable AI.  



10. Recommendations  

The successful integration of AI and ML into healthcare requires coordinated action across 

policy, organisational structures, research ecosystems, and frontline clinical practice. Lessons 

from Australia and the United States show that meaningful progress is only possible when 

health systems invest in strong data foundations, interdisciplinary capability, ethical 

governance, and clinically driven innovation. The following recommendations outline a 

strategic roadmap for the UK and NHS, informed directly by the practices, infrastructures 

and cultures observed during this Fellowship.  

10.1 Recommendations for UK Policymakers and National Health Bodies  

10.1.1 Invest in National Data Infrastructure  

Across both AIML and Dana-Farber, high-performing AI depended on well-linked, clean and 

interoperable datasets. Australia’s national data-linkage capabilities and the structured 

pipelines used in cancer genomics in Boston enabled research teams to combine imaging, 

genomics, clinical records, pathology and population-health data seamlessly (31). The UK 

must adopt a similar strategic approach.  

Recommendations:  

• Develop or expand unified national data platforms integrating imaging, EHRs, 

pathology, genomics, prescribing and outcomes.  

• Introduce mandatory interoperability standards to ensure consistent data structures 

across Trusts.  

• Provide long-term funding for data-engineering teams to maintain data quality and 

governance.  

Why this matters:  

Without high-quality data infrastructure, AI tools will remain limited to small pilots and will 

not generalise safely across the NHS.  

  

10.1.2 Establish Clear, Proportionate AI Regulation and Governance  

Both Australia and Boston used transparent, practical frameworks for AI evaluation including 

fairness audits, model-card-style documentation, and post-deployment monitoring. The UK 

requires similarly robust but enabling regulation.  

Recommendations:  

• Develop national standards for validation (external, temporal and demographic), 

fairness assessment and model drift detection.  

• Promote consistent documentation requirements, including provenance of training 

data and model limitations.  



• Support regulatory sandboxes to safely executes software or code without affecting 

the main system. Allowing safe real-world evaluation of emerging technologies.   

Why this matters:  

Governance that balances safety with innovation will accelerate adoption while protecting 

patients and maintaining public trust (32).  

10.1.3 Prioritise Ethical and Equitable AI Adoption  

The fairness-first culture observed at both AIML and Dana-Farber where biases were 

proactively identified and corrected demonstrated the need for ethical scrutiny as a core part 

of model development.  

Recommendations:  

• Require demographic fairness audits before NHS deployment.  

• Ensure that national training datasets include adequate representation of minority and 

underserved groups.  

• Promote explainability standards so clinicians can understand and safely act upon AI 

outputs.  

  

10.2 Recommendations for NHS Organisations and Integrated Care Boards  

10.2.1 Adopt a Clinical-Problem-First Approach  

AI tools succeed when they address a specific, clinician-defined need. AIML’s projects in 

rheumatoid arthritis scoring, COPD prognosis and IBD flare prediction all began with clear 

clinical problems, not technological curiosity.  

Recommendations:  

• Identify clinical bottlenecks collaboratively with frontline teams.  

• Prioritise AI initiatives where improvements in diagnosis, triage, backlog reduction or 

risk prediction can directly support patient care.  

• Avoid procuring AI tools that lack clear clinical value or workflow alignment.  

  

10.2.2 Build Cross-Disciplinary AI Teams  

AIML’s success depended on stable, interdisciplinary teams where clinicians, ML scientists, 

statisticians, epidemiologists, and implementation specialists worked side-by-side.  

Recommendations:  

• Establish NHS-embedded AI teams bringing together clinical, technical, analytics, 

informatics, and implementation expertise.  



• Provide protected time for clinicians to contribute to AI projects.  

• Develop hybrid clinical-AI roles to support long-term capability.  

 

10.2.3 Embed Implementation Science into Digital Transformation  

Implementation was treated as a scientific discipline at AIML, using workflow mapping, 

usability testing and iterative refinement before and after deployment.  

Recommendations:  

• Incorporate structured pilot phases with clear evaluation metrics.  

• Undertake human-factors testing, workflow redesign and training before deployment.  

• Implement live monitoring of AI performance, including drift detection and feedback 

loops.  

Even highly accurate models fail if they are not usable, trusted or well-integrated into 

daily clinical practice.  

10.3 Recommendations for Academic Institutions and Research Groups  

10.3.1 Prioritise Rigorous Methodology and External Validation  

Both AIML and Dana-Farber demonstrated that models tested only within their development 

dataset perform poorly in new contexts.  

Recommendations:  

• Secure external validation datasets, ideally across multiple NHS regions.  

• Conduct temporal, subgroup and demographic validation analyses as standard.  

• Ensure reproducibility through transparent pipelines, code release and documentation 

(33).  

 

10.3.2 Strengthen Training for Clinical AI Literacy  

Globally, the most effective teams included clinicians who understood ML fundamentals and 

data scientists who understood clinical workflows.  

Recommendations:  

• Integrate AI literacy into undergraduate, postgraduate and clinical training.  

• Develop interdisciplinary modules bridging statistics, ethics, informatics and clinical 

decision-making.  

• Create joint programmes in clinical AI, modelling and population health.  



  

10.3.3 Encourage Co-Development with Health Services  

AI research must be aligned with real NHS needs if it is to translate effectively.  

Recommendations:  

• Co-design research programmes with NHS partners.  

• Develop tools that are technically feasible within NHS digital architecture.  

• Shift research incentives towards clinical impact, not only publications.  

  

10.4 Recommendations for AI Developers and Industry Partners  

10.4.1 Focus on Transparency and Explainability  

Healthcare AI requires clarity on model training, assumptions, limitations and intended use 

(34).  

Recommendations:  

• Provide open, comprehensible documentation for clinical users.  

• Develop explainability outputs that clinicians can interpret safely.  

• Ensure transparency around model updates and version control.  

  

10.4.2 Align Tools with Real Clinical Workflows  

AIML’s ethnographic observation and workflow analysis demonstrated how usability 

determines adoption.  

Recommendations:  

• Observe real clinical environments before building tools.  

• Test prototypes early with clinicians and revise based on feedback.  

• Minimise cognitive burden and avoid adding extra steps to workflows.  

  

10.4.3 Commit to Long-Term Monitoring and Maintenance  

Models degrade over time as clinical practice changes.  

Recommendations:  

• Implement systems for drift monitoring, recalibration and safe updates.  

• Provide long-term technical support to clinical partners.  



• Maintain version-tracking and auditability.  

10.5 Recommendations for Clinicians and Healthcare Professionals  

10.5.1 Engage Early in Co-Development  

Clinician involvement is essential for trust, safety and usability.  

Recommendations:  

• Participate in defining clinical use cases for AI.  

• Co-produce tools and workflows with data scientists.  

• Provide iterative feedback during testing and evaluation phases.  

10.5.2 Develop Skills in Digital and AI Literacy  

Observations from AIML and Dana-Farber highlighted how empowered clinicians accelerate 

safe adoption.  

Recommendations:  

• Access training in ML basics, data governance and ethical AI.  

• Learn to interpret AI outputs and recognise limitations.  

• Understand when AI should not be applied.  

10.5.3 Advocate for Patient-Centred AI Adoption  

Clinicians are essential for communicating with patients and maintaining public trust.  

Recommendations:  

• Explain clearly how and why AI tools are being used in care.  

• Support informed consent and shared decision-making.  

• Monitor and report inequities in AI-assisted pathways.  

11.0 Conclusions 

11.1 AI, System Design, and Interdisciplinary Collaboration 

Across both sites, it became clear that the successful introduction of AI in healthcare depends 

on designing systems that reflect the realities of clinical practice. Effective tools were those 

built through close collaboration between clinicians, data scientists, engineers, geneticists and 

ethicists, ensuring that technical solutions aligned with user needs and ethical expectations. 

The Fellowship demonstrated that interdisciplinary structures are not optional; they are 

fundamental to producing AI that is clinically relevant, safe to use, and capable of improving 

patient outcomes. For the UK, this highlights the need to develop integrated design processes 

that embed clinical insight, governance considerations and implementation expertise from the 

outset. 



11.2 Population-Level AI and the Role of Data Infrastructure 

The Australian experience illustrated how strong data foundations enable AI to contribute 

meaningfully to population health. High-quality linkage, consistent coding practices and 

well-established governance processes allowed researchers to apply ML methods to 

large-scale datasets for surveillance, prediction and service planning. These capabilities 

enabled analysis of chronic illness trajectories, early detection opportunities and 

health-system demand. The UK already holds exceptional datasets, but unlocking their full 

potential will require greater interoperability and investment in robust, sustained data 

engineering. The Fellowship confirmed that population-level AI is achievable only when 

supported by mature national infrastructure. 

11.3 AI for Clinical Decision Support and Personalised Care 

In clinical oncology settings, AI showed clear value in supporting diagnostic clarity, 

predicting treatment response and enhancing risk stratification. Models such as OncoNPC 

demonstrated how ML can guide decision-making in complex scenarios particularly when 

conventional diagnostics reach their limits. Similarly, models for imaging interpretation and 

chronic disease prognosis showed how AI can reduce variation and offer more consistent 

insights. The unifying lesson across both Boston and Australia was that AI must augment, not 

replace, clinician expertise. For the NHS, this underscores the importance of focusing future 

development on tools that are interpretable, clinically anchored and evaluated within 

real-world workflows. 

11.4 Ethics, Equity and Responsible Deployment 

The Fellowship highlighted important ethical considerations associated with AI adoption, 

including ancestry bias, transparency, explainability and public trust. These issues are 

especially relevant in genomics-driven oncology, where imbalanced datasets can contribute 

to unequal model performance across patient groups. Both institutions I visited were actively 

addressing these challenges through systematic validation, fairness analysis and clear 

communication around data use. For the UK to adopt AI responsibly, equity and ethical 

governance must be integrated throughout the model lifecycle. This includes ongoing 

monitoring, transparent reporting and meaningful engagement with patients and the public 

about how AI systems operate and how their data are used. 

12.0 My Achievements 

Following completion of my Fellowship travels across USA and Australia, I have focused on 

consolidating the skills, learning and networks developed during my time abroad. The 

Fellowship accelerated my professional growth as a clinical academic in cancer research and 

artificial intelligence, enabling me to expand my research portfolio, secure new funding 

opportunities, strengthen international collaborations and disseminate my learning widely 

across academic and clinical communities. This section summarises my key achievements to 

date. 



12.1 Awards and Funding Successes 

King’s Prize Fellowship in Artificial Intelligence (2025–2027) 

One of the most significant achievements following my Fellowship was applying for the 

prestigious King’s Prize Fellowship award, focused on applying AI to cancer risk prediction 

and decision support. The insights gained from both Dana‑Farber Cancer Institute and AIML 

particularly around data integration, model evaluation, and clinical codesign were 

instrumental in shaping a competitive proposal and articulating a clear programme of 

translational AI research. 

This Fellowship will provide: 

• Protected research time to advance ML models for tumour microenvironment analysis 

and immunogenomics 

• Access to interdisciplinary AI expertise across King's College London 

• A platform for establishing UK–US–Australia collaborations that originated from my 

Churchill travels 

 

12.2 International Research Collaborations 

My visits to Dr Alexander Gusev’s Lab (Dana‑Farber) and the AIML resulted in ongoing 

and emerging collaborations that continue to shape my research direction. 

Collaborations established include: 

• Joint methodological discussions with the Gusev Lab, exploring applications of 

germline somatic modelling and CUP classification tools (e.g., OncoNPC) in UK 

datasets. 

• A developing partnership with Professor Palmer’s team focused on applying 

implementation science and rigorous ML evaluation methods to cancer prediction 

models. 

• Cross‑institutional dialogue on building multi‑omic risk models in 

immuno‑oncology, with opportunities for future student exchanges and exploratory 

grant applications. 

These collaborations not only enrich my academic work but also support the translation of 

international best practice into the UK setting. 

 

12.3 Scientific Outputs and Publications 

Work generated from the Fellowship has contributed to several publications and manuscripts 

currently in development. These outputs draw on the methodological advances observed at 

Dana‑Farber and AIML, including: 

• Application of multi‑omic integration for cancer risk prediction 

• ML approaches to immune microenvironment characterisation 



• Evaluations of fairness, bias and model drift in oncology AI tools 

• Conceptual frameworks for implementing AI safely within NHS cancer services 

Once published, these will form a significant component of the emerging UK knowledge base 

on AI in oncology. 

 

12.4 Presentations and Dissemination Activities 

My Fellowship findings have been shared widely across academic, clinical and AI 

communities. Notably: 

ESMO AI in Oncology Conference (2025) 

I presented work informed directly by my visits to AIML and Dana‑Farber, focusing on: 

• Lessons learned from international leaders in AI‑driven cancer research 

• Clinical utility of ML classifiers such as OncoNPC in cancers of unknown primary 

• Implementation science approaches essential for AI adoption in the NHS 

This presentation was highly impactful, reinforcing the relevance of my Fellowship to 

global oncology discourse (see appendix for the full details of the poster). 

 

Above is the poster presentation that was accepted to at ESMO 2025 AI and digital 

oncology conference in Berlin. I also had an e-poster which was accepted and displayed 

in the podium. 

 

 

 

 

 

 



Additional invited talks and workshops include: 

• Presentations within King’s College London cancer research programmes 

• Seminars for NHS cancer networks exploring responsible AI adoption 

• Contributions to AI‑policy roundtables and digital health innovation groups 

Through these, I have helped raise awareness of both the opportunities and limitations of AI 

in cancer research, translating complex concepts into practical insights for clinicians, 

researchers and health leaders. 

 

12.5 Development of New Research Networks 

Inspired by multidisciplinary models at AIML and Dana‑Farber, I have contributed to 

building new collaborative structures within the UK, including: 

• Early development of a Cancer AI Implementation Network, connecting AI 

researchers, clinicians, and data governance experts 

• Ongoing discussions with NIHR and cancer alliances to establish a UK‑focused AI in 

Oncology Working Group 

• Strengthening ties between King’s, UK NHS Trusts, and international partners to 

enable shared datasets, joint grant proposals and translational projects 

These networks will be critical for moving UK oncology AI from research into practice. 

13.0 My Future direction 

The Churchill Fellowship has been transformational for my professional development, 

expanding both the depth and direction of my research in AI‑enabled oncology. The 

opportunity to work alongside leading scientists at Dana‑Farber Cancer Institute and Harvard 

Medical School and with Professor Lyle Palmer’s team at the AIML provided an unparalleled 

international perspective on how ML can be responsibly and effectively integrated into 

clinical practice, cancer research, and population‑health decision making. 

My next steps focus on translating these global insights into meaningful impact for UK 

patients, clinicians and research communities. 

13.1 Advancing Research on AI for Cancer Risk, Diagnosis and Precision 

Medicine 

Building on the expertise gained from USA and Australia, my immediate aim is to deepen 

research into: 

• AI‑driven risk prediction models integrating germline, somatic and clinical features. 

• ML tools for tumour microenvironment profiling, including immunological 

signatures. 

• Model evaluation frameworks suitable for real‑world NHS contexts, including 

temporal drift testing and fairness assessments. 



I will continue developing collaborations with Dana‑Farber’s computational oncology teams 

and AIML’s public‑health analytics researchers, focusing on cross‑institutional model 

validation, a noted gap in current UK AI development. 

13.2 Delivering My King’s Prize Fellowship Programme 

The Fellowship learnings directly supported my application for the King’s Prize 

Fellowship award, where I will lead the programme that applies advanced ML techniques 

to improve cancer diagnostics and immunotherapy stratification. This work will 

incorporate: 

• Multi‑omic integration inspired by Dr Gusev’s methodologies. 

• Population‑level modelling approaches adapted from Professor Palmer’s work. 

• Implementation‑science frameworks observed at AIML to support NHS 

deployment. 

This programme will become a major platform for embedding responsible AI practice 

within UK cancer research. 

13.3 Dissemination and International Knowledge Sharing 

A core responsibility of the Churchill Fellowship is dissemination. I have already begun 

sharing findings through high‑profile scientific and clinical forums, including presenting 

Fellowship‑informed work at the ESMO AI and Oncology Congress, with further invited 

talks planned at national and international symposia. 

Future dissemination activities will include: 

• Peer‑reviewed publications on CUP classification, germline–somatic modelling and 

implementation science for AI. 

• Workshops with NHS teams on AI readiness and evaluation standards. 

• Engagements with UK research funders to improve structures for multi‑disciplinary 

AI research. 

13.4 Building Capacity and Networks in UK Clinical AI 

The Fellowship reinforced the need for hybrid expertise across clinical, data‑science and 

population‑health domains. My next steps include: 

• Establishing a cross‑faculty AI in Oncology Working Group at King’s to bring 

together clinicians, statisticians, computer scientists and ethicists. 

• Supporting development of clinical AI literacy through training sessions, seminars 

and mentoring. 

• Contributing to national conversations on AI governance through NHS England, 

NIHR and professional societies. 

This work aims to ensure the UK develops a workforce capable of leading safe, equitable and 

impactful AI adoption. 

 



13.5 Future Research Directions  

The Fellowship has defined several strategic priorities that will shape my next phase of 

research in AI‑enabled oncology. A central focus will be evaluating the clinical utility of 

models such as OncoNPC within UK cancer datasets, particularly for cancers of unknown 

primary. Applying these tools to diverse, multi‑ancestry NHS populations will help determine 

their generalisability, fairness, and potential for integration into UK clinical pathways. 

Building on insights from both Dana‑Farber and AIML, I will advance work on 

multi‑ancestry ML methods to ensure that predictive models perform equitably across the 

UK’s diverse population. In parallel, I will explore AI for early cancer detection, using 

multimodal approaches that combine genomics, imaging and clinical data to identify 

high‑risk individuals earlier and support more personalised surveillance strategies. 

A further research priority will be addressing the ethical, governance and equity dimensions 

of AI in oncology, including transparency, patient trust and the risk of algorithmic bias. These 

themes emerged consistently across both international visits and will underpin future 

programme design. 

To underpin this scientific trajectory, I will apply for major UK career development awards, 

including the MRC Career Development Award and the Wellcome Trust Early‑Career. These 

will support the establishment of an independent research programme focused on multi‑omic 

modelling, robust AI evaluation, and translational genomics directly informed by the 

methodological and implementation insights gained during the Fellowship. 

Together, these research directions aim to help position the UK as a leader in responsible, 

clinically meaningful AI for cancer care. 

14.0 Concluding Remarks 

This Fellowship has been genuinely transformative professionally, academically and 

personally. It offered the opportunity to learn from world‑leading centres that are not simply 

building cutting‑edge algorithms but are reshaping how AI can be safely embedded into 

healthcare systems. The insights gained illustrate that the future of AI in oncology will 

depend not only on technical innovation, but on data infrastructure, interdisciplinary 

collaboration, ethical governance and meaningful engagement with clinicians and patients. 

The Churchill Fellowship has strengthened my belief that the UK has the talent, clinical 

datasets and institutional capability to lead in this space provided we commit to the right 

foundations. I am deeply grateful for the opportunity to undertake this work and look forward 

to building on these experiences to help advance responsible, equitable and patient‑centred AI 

adoption within UK cancer care. 

Thank you for reading this report. I hope it contributes to national efforts to harness AI in 

ways that improve diagnosis, personalise treatment and ultimately enhance the lives of people 

affected by cancer. 



I extend my deepest thanks to my husband for his unwavering support, love, and 

encouragement throughout this journey. His constant presence transformed what could have 

been a demanding and challenging period while caring for our four-month-old at the start of 

the Fellowship and continuing through to now, into an experience that was deeply meaningful 

and profoundly rewarding. 
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