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1. Executive Summary

I am a cancer researcher and clinician—scientist specialising in the tumour microenvironment,
immuno-oncology, and translational data science. As a Senior Research Fellow at King’s
College London, my work focuses on developing Al-enabled approaches for cancer risk
stratification, early detection, and treatment decision support. I applied for the Churchill
Fellowship to understand how world-leading centres operationalise artificial intelligence (AI)
and machine learning (ML) in real healthcare settings, and to identify strategies that could
meaningfully accelerate responsible Al adoption across the UK, particularly within the NHS
and cancer research ecosystem.

In line with these aims, my Fellowship began in the USA (Boston), where I spent time at
the Dana-Farber Cancer Institute (DFCI) and the Gusev Lab, one of the foremost groups
in computational cancer genomics. This visit offered direct insight into how advanced ML
tools such as OncoNPC for cancers of unknown primary (CUP), polygenic risk score
modelling, and multi-omic integration frameworks are being developed, validated, and
translated into precision oncology (1). Observing the Gusev Lab’s interdisciplinary culture
and rigorous methodological standards clarified how Al can support clinical questions in
oncology, from improving diagnostic certainty to enabling more personalised treatment
decisions (2).

I then travelled to Australia, where I undertook a structured placement at the Australian
Institute for Machine Learning (AIML) and shadowed Professor Lyle J. Palmer, an
international leader in genetic epidemiology, public-health analytics and medical ML. AIML
provided a contrasting but complementary perspective to Boston: a mature translational
ecosystem where Al solutions are codesigned with clinicians, embedded into real workflows,
and evaluated through national-level data infrastructures and implementation-science
methods. At AIML, I observed ML tools being applied to imaging, chronic disease prognosis,
biobank-scale modelling, and public-health platforms each developed through a clinically
driven, data-ready, interdisciplinary approach (3,4).

Across both international visits, a consistent set of insights emerged. High impact Al in
healthcare does not begin with algorithms; it begins with well-defined clinical problems, high
quality linked datasets, interdisciplinary teams, and governance frameworks that ensure
fairness, safety, and public trust. Equally important is rigorous external validation and
thoughtful implementation planning both of which determine whether Al systems succeed in
real clinical environments. These lessons reaffirmed that the UK’s opportunity lies not only in
scientific innovation but in building the infrastructure, standards, and workforce necessary to
translate Al into routine practice.



Key findings from the Fellowship include:

Al delivers the greatest value when developed in direct response to clearly
articulated clinical needs, such as cancer of unknown primary (CUP) classification,
imaging backlogs, chronic-disease risk prediction or personalised oncology.

Data quality, interoperability and linkage are foundational, enabling ML models
to learn from diverse, representative, and clinically meaningful datasets.

Robust evaluation including external and temporal validation, subgroup analysis
and real-world testing is essential for safe and equitable deployment.

Interdisciplinary collaboration between clinicians, data scientists,
epidemiologists, geneticists and engineers are a prerequisite for translational
progress.

Ethics, fairness, transparency, and patient trust must underpin every stage of AI
development and implementation, especially in high-stakes fields such as oncology.

These insights directly strengthen my ongoing research at King’s and my leadership in
Al-enabled cancer prediction and decision support. This Fellowship has also enabled me to

secure new international collaborations, apply for competitive Al funding, and present my
early outputs at the ESMO AI in Oncology Conference, positioning the UK as an active
contributor in the global Al-oncology landscape.

This report presents the detailed findings of my visits to Boston and Australia and offers a set

of strategic recommendations for UK policymakers, NHS organisations, academic

institutions, clinicians, and Al developers. It outlines how the UK can build a trustworthy,

clinically driven infrastructure for Al adoption ensuring that emerging technologies genuinely
improve outcomes for patients and support the future of precision medicine.



2. Aims of the Fellowship

The overarching aim of my Churchill Fellowship was to explore how artificial intelligence
(AI) and machine learning (ML) can be harnessed to improve healthcare delivery, with
particular emphasis on cancer research, precision medicine, and clinical decision-making.
Central to this objective was understanding how internationally leading centres design,
validate and integrate Al-driven tools into real-world clinical workflows, and identifying
lessons that could be applied within the UK especially the NHS.

To achieve this, the Fellowship focused on the following aims:
2.1 Investigate global best practice in Al and ML for healthcare

This aim centred on examining how world-leading institutions particularly those in Australia
develop and deploy advanced ML systems across fields such as clinical imaging, genomics,
population health and risk prediction. It involved understanding the scientific, technical, and
organisational frameworks that support successful Al adoption.

2.2 Explore the application of AI/ML to cancer research and precision medicine

This component focused on assessing how Al is being used to identify cancer-associated
genes, decode tumour biology, model therapeutic responses, and guide personalised treatment
decisions. Given my research in tumour immunology and the tumour microenvironment, I
sought to understand how ML can accelerate discovery and improve patient outcomes.

2.3 Learn from interdisciplinary teams implementing Al in clinical practice

A core aim was to observe how clinicians, computer scientists, epidemiologists, engineers,
and public-health experts collaborate to create Al tools that are clinically meaningful,
reliable, and safe. This included exploring how interdisciplinary structures operate in
practice, and how such models might be adapted for UK clinical and research environments.

2.4 Examine data infrastructure, governance, and ethics frameworks

This objective focused on understanding how leading centres manage data quality,
interoperability, patient privacy and model governance elements essential for responsible and
equitable use of Al I also examined how institutions address issues such as algorithmic bias,
fairness, transparency, and public trust.

2.5 Analyse real-world implementation pathways for Al tools

A key part of the Fellowship was studying how institutions move from algorithm
development to clinical integration. This included analysing validation processes, workflow
redesign, training requirements, evaluation strategies, stakeholder engagement and long-term
monitoring elements critical for safe and sustainable deployment.

2.6 Identify actionable lessons for the NHS and UK research ecosystem

The Fellowship aimed to gather insights that could inform future UK strategies for
Al-enabled healthcare, including priorities such as national data infrastructure, regulatory



requirements, workforce skills, research—clinical partnerships and technological adoption
frameworks.

2.7 Strengthen international partnerships in Al-based healthcare innovation

Finally, the Fellowship sought to build lasting relationships with international leaders
including Professor Lyle J. Palmer and the Australian Institute for Machine Learning (AIML)
to support ongoing collaboration between global Al research groups and UK academic and
clinical institutions.

3. Background and Rationale

Artificial intelligence (AI) and machine learning (ML) are transforming modern healthcare,
particularly in oncology, genomics, and clinical diagnostics. These technologies offer
powerful opportunities for earlier detection, personalised treatment planning and more
efficient decision-making (5). Yet their translation into real-world clinical settings remains
uneven. Many promising models never progress beyond research prototypes, while health
systems struggle with fragmented data infrastructures, unclear implementation pathways and
variable governance standards. My Churchill Fellowship was established to examine how
leading international centres address these challenges and to identify lessons that could
strengthen Al adoption within the UK especially across the NHS.

My research at King’s College London focuses on the tumour microenvironment, immune
responses, and the use of advanced computational approaches to analyse large, complex
biological datasets. With the growth of genomic sequencing, digital pathology and
multimodal imaging, cancer research has become increasingly data-rich. However, much of
the analytic potential of these datasets cannot be realised without robust ML methods and the
system-level capacity to implement them safely. The NHS, with its extensive clinical records
and national genomic infrastructure, is uniquely positioned to benefit from Al but only if the
underlying systems, governance, and workforce are equipped to support translation (6).

Australia was selected as a key site for the Fellowship because of its strong international
reputation in applied ML, particularly through the AIML. AIML’s focus on clinically
grounded Al, its integration with public-health agencies and its national data-linkage
capabilities provides a model for how Al can be embedded into a healthcare system with
challenges similar to the UK’s (7). Shadowing Professor Lyle J. Palmer a leader in genetic
epidemiology, chronic-disease modelling and population-scale data science offered a unique
opportunity to observe how interdisciplinary teams design, evaluate and implement Al tools
that are both scientifically robust and operationally feasible (8).

The Boston component of the Fellowship, undertaken at the Dana-Farber Cancer Institute and
Harvard Medical School, provided a complementary perspective by offering exposure to
advanced machine-learning approaches in precision oncology, multi-omic data integration
and the development of state-of-the-art computational tools such as OncoNPC. This
experience allowed the Fellowship to encompass two contrasting yet highly effective models
of Al-driven innovation: the Australian model, centred on population-health analytics,



data-linkage infrastructure and system-level implementation, and the Boston model,
characterised by its focus on computational genomics, quantitative cancer science and
translational precision medicine (9). Together, these environments offered a comparative
framework for understanding how different institutional ecosystems enable the design,
validation, and deployment of clinically impactful Al technologies.

These international examples helped me explore three core questions underpinning the
Fellowship:

1. What scientific and infrastructural conditions enable successful AI adoption in
healthcare?

2. How do leading centres develop, validate, and implement Al tools that are
clinically meaningful and trustworthy?

3. What lessons can the UK apply to ensure safe, equitable and scalable integration
of Al into the NHS?

The rationale for the Fellowship was further shaped by several urgent needs within UK
healthcare:

e Robust implementation pathways: Many UK Al models stall at the
proof-of-concept stage without clear routes into clinical use.

o Data quality and interoperability: NHS datasets are extensive but inconsistent,
limiting model performance and equity.

o Interdisciplinary capacity: Effective Al requires coordinated input from clinicians,
data scientists, engineers, ethicists, and implementation expert’s structures still
developing in the UK.

o Rising demand for precision oncology: Increasing reliance on genomics, digital
pathology and predictive tools requires advanced computational infrastructure.

o Ethical and equitable governance: Public trust depends on transparency, fairness
assessment, and rigorous oversight across the Al lifecycle.

By examining how Australia and Boston address these issues through mature data
ecosystems, interdisciplinary team science and rigorous evaluation frameworks this
Fellowship aimed to identify practical strategies that can inform UK policy, research
investment and clinical integration (10,11).

Ultimately, the rationale for this work rests on a simple premise: Al has the potential to
improve outcomes, reduce diagnostic delays and support personalised cancer care, but only
when developed and deployed within systems designed for safety, reproducibility, and equity
(12). This Fellowship provided the opportunity to study those systems in practice and to
generate insights that can help the UK realise the full potential of Al-enabled healthcare.



4. Quantitative Genomics and Machine Learning: Visit to
the Gusev Lab, Dana-Farber Cancer Institute & Harvard
Medical School

4.1. Background and Purpose of the Visit

As part of my Churchill Fellowship examining the translation of Al and ML into healthcare, I
visited the laboratory of Dr Alexander (“Sasha’) Gusev at the Dana-Farber Cancer Institute
and Harvard Medical School. Dr Guseyv, a statistical geneticist and Associate Professor of
Medicine, leads a programme focused on developing computational and ML approaches to
characterise genetic architecture, tumour biology and therapeutic response in cancer.

This visit was designed to complement my time in Australia by providing exposure to a
leading US centre of computational and translational oncology, with a particular emphasis on
quantitative genetics, multi-omic integration and ML-based predictive modelling. Together,
the two components of the Fellowship offered contrasting yet complementary perspectives on
Al innovation: a population-health, system-level model in Australia and a precision-oncology,
genomics-centred model in Boston.

The specific aims of the Boston visit were to:
o Examine how AI/ML is applied in quantitative genetics and cancer-risk research.

e Learn about emerging predictive-modelling techniques for cancer risk assessment and
therapy response.

o Understand strategies for addressing data-quality issues, algorithmic bias and the
challenges of clinical integration.

e Observe interdisciplinary collaboration between geneticists, oncologists, data
scientists and computational biologists.

e Explore how such approaches could improve diagnostics and patient outcomes in
settings analogous to the NHS.

4.2. Overview of Dr Gusev’s Research Programme

Dr Gusev’s group develops methods at the interface of statistical genetics, cancer genomics
and ML, with several recurring themes:

1. Machine learning classifiers for tumour type and origin
2. Polygenic risk scores (PRS) and germline-somatic interactions
3. Integrative multi-omics to map causal mechanisms and therapeutic targets

4. Bias, ancestry and generalisability in genetic and ML models



4.2.1 OncoNPC: ML for Cancers of Unknown Primary

A central highlight of my visit was the opportunity to study OncoNPC, a machine-learning
classifier designed to predict the primary site of origin for cancers of unknown primary
(CUP) a highly challenging diagnostic category representing 3—5% of all malignancies. CUP
patients often present with metastatic disease, and despite extensive imaging, histopathology
and immunohistochemistry, the primary tumour site frequently remains undetermined (1).
Without this information, oncologists must rely on nonspecific therapies, contributing to
poorer outcomes.

OncoNPC was developed specifically to address this longstanding diagnostic limitation.
Trained on more than 36,000 tumours across 22 cancer types and multiple institutions, the
model uses only routinely available targeted next-generation sequencing (NGS) panels
(Figure 1). This reliance on standard genomic assays is a major strength, enabling seamless
adoption within existing laboratory workflows (13). The model identifies subtle genomic
patterns including somatic mutations, copy-number alterations and mutational signatures that
remain detectable even in metastatic tissue with ambiguous morphology (14).

Its performance is notable. In cancers with unknown primaries, OncoNPC achieves
approximately 80% accuracy overall and around 95% accuracy for high-confidence
predictions. When applied to 971 CUP patients at Dana-Farber, the model produced
high-confidence predictions for roughly 41% of cases an unprecedented diagnostic support
level in this historically uncertain field. Retrospective analyses showed that CUP patients
who, by chance, received treatments aligned with the model’s predictions experienced
improved survival outcomes. The tool also more than doubled the number of CUP patients
eligible for genomic guided targeted therapies (15).

OncoNPC'’s value lies in its ability to augment clinical judgement at points where
conventional diagnostics reach their limits. By providing a molecularly grounded prediction,
it supports multidisciplinary discussions and enables tumour-specific treatment pathways. For
the NHS, which manages substantial CUP caseloads and possesses large-scale genomic
datasets (e.g., through Genomics England), similar classifiers could substantially improve
diagnostic certainty and equitable access to targeted therapies.

Overall, OncoNPC exemplifies clinically anchored, rigorously validated and ethically
responsible Al qualities central to my Fellowship’s aims and highly relevant to future UK
innovation.



Madel evaluation and interpretation
b Model performance evaluation

Cancer cenlers Ethnicities
104 of==

Targeted clinical NGS assays : DFCI OncoPanel, MSK-IMPACT and VICC panel |

Precision
ci

Somatic variants pre processing a

B

o el )
Recall .0 Recall 10

5 dodb

OncoNPC predictions for
held-out CKP tumors

Model interpretation

CNA events

el OncaNPC predictions for Somatic
{n = 38,465 tmor samples with known primary cancer types) CUP wmors

Clinical utility of OncoNPC classifications for patients with CUP

Actionable molecular ' Risk stratification among g o " h Effect of OneoNPC-treatment
alterations patients with CUF " g concordance on prognosis

Mutation signature

—

d Germline PRS validation for CUP tumor samples

® =

Survival probability

predicted cancer subgroups
Survival probability

OncoNPC-

Hazard ratic Time

OnceKB pracision Treatment plans
P In-house follow up and clinical outcome databsse Ta Pt
oncology database database

Figure 1: a. Overview of the OncoNPC development process. The classifie—built using an XGBoost framework—was
trained on 36,465 cancers with known primary (CKP) spanning 22 tumour types sourced from three major cancer
centres.

b. Model performance was assessed using an independent held-out test set comprising 7,289 CKP samples,
enabling evaluation of accuracy and generalisability.

c. OncoNPC was then applied to 971 cancers of unknown primary (CUP) from a single institution to generate
predicted primary tumour types.

d-g. The resulting OncoNPC-defined CUP subgroups were examined for their association with: (d) elevated germline
cancerrisk, (e) actionable somatic alterations with therapeutic relevance, (f) differences in overall survival,

and (g) key prognostic somatic features.

h. Afinal analysis explored treatment-specific outcomes in a subset of CUP patients for whom detailed therapeutic
data were available, assessing alignment between received therapies and model-predicted tumour origin.
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4.2.2 Polygenic Risk Scores and Germline—Somatic Interactions

Another major theme of Dr Gusev’s programme concerns how inherited genetic
predisposition quantified using polygenic risk scores (PRS) interacts with somatic mutational
processes to shape tumour evolution. This work bridges two traditionally distinct domains:
germline susceptibility and tumour biology.

The core insight is that cancers emerge from a dynamic interplay between inherited factors
and acquired mutations. By integrating PRS with somatic mutation patterns, the team
demonstrates how inherited risk influences which mutational processes become active,
tumour aggressiveness and ultimately treatment response (16).

The lab’s findings show that PRS for traits relevant to cancer such as smoking behaviour,
tanning response, BMI and immune function correlate with specific somatic mutational
signatures and tumour mutational burden (Figure 2). This suggests that germline variation
shapes the biological environment in which somatic mutations develop, influencing mutation
accumulation, pathway disruption and tumour immunogenicity.

Crucially, the team has shown that inherited variation can modify tumour evolutionary
pathways. For example, individuals with high PRS for certain cancers may be predisposed to



DNA-repair deficiencies or environmental exposures that activate specific mutational
processes. This mechanistic link provides a more comprehensive explanation for
inter-individual differences in tumour behaviour.

Integrating PRS with clinical and somatic data has enhanced risk-prediction models, clarified
survival differences, and helped identify patient subgroups for targeted therapies or
intensified surveillance. This approach moves oncology closer to genuinely personalised
prevention and treatment, where inherited and acquired variation are considered together

(17).

The implications for the UK are significant. Although the NHS holds world-leading germline
datasets, integration with somatic sequencing is limited in routine clinical care. The Gusev
Lab’s work provides a methodological blueprint for combining these domains to improve
prediction, personalise prevention pathways and refine therapeutic stratification. It also
underscores the need for multimodal ML models incorporating germline, somatic, clinical
and microenvironmental features (18).

This research aligns closely with my own interests in immunology and tumour
microenvironment and has directly informed the development of integrative modelling
strategies for UK oncology.
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Figure 2: a WES of 157 germline samples from 80 UC patients (WCM-UC cohort) b Somatic variants identified through
EXaCT-1 whole-exome sequencing (WES) pipeline using matched tumor-normal samples. ¢ The DGVar framework for
the identification of putative deleterious germline variants (pDGVs). d Comparison cohorts: 398 patients from the
TCGA-BLCA cohort, and 11,035 noncancer subjects from the SPARK non-cancer cohort. e Functional predictions
using CADD scores, three-dimensional modeling of the effects of pDGVs on protein data bank (PDB) structures and
somatic LOH analysis f Germline-somatic interactions at the gene and pathway levels.

4.2.3 Integrative Omics and Causal Mapping in Cancer

A further major strand of research within Dr Gusev’s laboratory involves developing methods
to integrate multiple layers of biological data commonly described as multi-omic integration
to identify causal genes, regulatory pathways, and therapeutic targets across cancer types. The



lab brings together genome wide- association study (GWAS) summary statistics, expression
quantitative trait loci (eQTL) data, methylation QTLs, bulk tumour transcriptomics, single
cell- RNA sequencing, and detailed clinical outcomes (19). By combining these datasets
within advanced analytical frameworks such as Transcriptome Wide- Association Studies
(TWAS) and related ML enhanced- pipelines, the team aims to infer not only which genes are
associated with cancer, but zow and why they influence tumour initiation, progression, and
treatment response.

Traditional genomic studies often identify hundreds or thousands of variants associated with
cancer risk, yet translating these findings into biological understanding or therapeutic
opportunity is difficult. Many risk loci fall in non-coding regions of the genome, and the
pathways linking inherited variation to tumour behaviour remain unknown. TWAS and
multi-omic integration address this challenge by leveraging regulatory information such as
gene expression, chromatin accessibility or methylation patterns to prioritise genes whose
altered regulation is most likely driving disease mechanisms (20). In other words, these
approaches move beyond simple statistical association toward causal inference, offering far
greater insight into the biological processes underlying cancer.

The Gusev Lab is recognised internationally for developing and refining these integrative
frameworks. Their work has identified candidate causal genes in breast, prostate, colorectal
and ovarian cancer by aligning genetic signals with transcriptional changes in tumour tissues.
By incorporating single cell RNA-seq data, they also capture cell type- specific effects,
revealing how inherited and acquired- genomic variation shapes distinct cellular
compartments within the tumour microenvironment including immune populations, stromal
elements and malignant subclones (21). These insights are particularly relevant to my own
research interests, as they illustrate how underlying genetic architecture can influence
immune infiltration, inflammation and the tumour’s ability to respond to therapy.

Another strength of this integrative approach is its ability to uncover regulatory

networks rather than isolated genes. Instead of highlighting a single locus, these analyses
reveal coordinated gene programmes and signalling pathways that govern tumour progression
or therapeutic resistance. This network level understanding is essential for identifying
druggable nodes, predicting combination therapy strategies and improving biomarker
discovery (22).

Clinically, these methods are beginning to influence precision oncology. By linking inherited
genetic variation and tumour transcriptional profiles to patient outcomes, the lab can refine
prognostic models and identify which biological pathways are associated with better or worse
survival. In several studies, integrating germline and somatic information improved the
prediction of treatment response, particularly in cancers where immune activity or DNA
damage repair pathways play a central role (23). This is an area of increasing relevance for
immunotherapy stratification and outcome prediction.

The implications of this research for the UK cancer landscape are significant. The NHS and
UK research institutions generate vast multi-omic datasets through initiatives such as the
100,000 Genomes Project, Genomics England, UK Biobank, the Cancer Research UK



Stratified Medicine Programme and NIHR Bio Resource. However, these datasets are often
analysed in isolation, with limited integration between germline, somatic and transcriptomic
layers. The approaches pioneered by the Gusev Lab demonstrate how high value biological
and clinical insights emerge only when these data types are combined. This integration could
support improved risk prediction, early detection strategies, identification of -high-

risk- individuals, and more precise therapeutic stratification within the NHS.

Furthermore, this work underscores the importance of incorporating causal inference
techniques into the development of Al and ML models. Many existing clinical ML models
operate purely on predictive associations without understanding underlying mechanisms,
limiting their interpretability and clinical trustworthiness. The multi-omic causal

mapping- strategies used by the Gusev Lab offer a path toward more interpretable and
biologically grounded models an approach that aligns well with the UK’s emphasis on
trustworthy, explainable Al (24).

4.2.4. Activities During My Visit

During my time in Dr Gusev’s lab, I:

e Met with Dr Gusev and his team to discuss ongoing projects, including OncoNPC
and germline—somatic interaction studies.

o Attended lab meetings where multi-disciplinary groups (statistical geneticists,
oncologists, computational biologists) reviewed recent results, troubleshooting model
performance and interpretation.

e Observed presentations on model development pipelines, from raw NGS data
through feature engineering, model training (e.g., gradient boosted trees, deep
learning), and evaluation.

o Discussed data challenges such as sample heterogeneity, ancestry representation,
missingness, batch effects and label uncertainty, especially in CUP.

o Explored how the lab collaborates with clinical programmes at Dana Farber,
integrating model outputs into retrospective analyses and exploring prospective
clinical utility.

This immersive exposure allowed me to understand not only the scientific outputs, but also
the culture, workflow and decision-making processes underpinning a high performing
computational oncology lab.



Lab meeting in Dr Gusev’s lab
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bioinformatic scientists,
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clinicians and PhD students.
The main focus of all the
different projects was to
develop accurate predictive
models for large clinical
cohorts.

5. Findings from Dr Gusev Lab

5.1 Multi-modal Data Integration is Essential for Next-Generation Cancer Al

A key lesson from the Gusev Lab was the central importance of integrating diverse data types
when modelling cancer biology. Rather than relying on isolated features, their most effective
approaches combined germline variation, somatic mutations, mutational signatures,
transcriptomic patterns and clinical factors within unified analytical frameworks. This
demonstrated that cancer behaviour cannot be understood through a single biological lens;
meaningful insights emerge only when inherited risk, acquired mutations, tumour
transcriptional states and treatment context are considered together. This perspective aligns
directly with the evolving direction of oncology research, where multi-omic integration is
becoming indispensable for decoding tumour evolution, immune interactions and treatment
response.

5.2 Clinically Anchored Model Development Enhances Impact

A defining characteristic of the lab’s work was its commitment to designing models around
clearly articulated clinical problems. Rather than asking what data could predict, the team
consistently began by identifying questions that matter to oncologists and patients: improving
tumour classification when diagnosis is uncertain, refining risk stratification by integrating
germline and somatic information, or identifying which tumours are likely to respond to
specific therapies. This problem driven approach ensured that computational outputs
remained tightly aligned with clinical decision-making and avoided the common pitfall of
building technically impressive models with limited real-world relevance.

5.3 Addressing Bias and Ensuring Generalisability is a Core Scientific Priority

The lab foregrounded the challenge of ancestry imbalance and demographic bias in genomic
and ML research. Many existing datasets disproportionately represent individuals of



European ancestry, raising concerns about model performance in other groups. The team
actively evaluated model behaviour across ancestry groups, explored multi-ancestry statistical
frameworks and emphasised transparent reporting of cohort composition. This reinforced a
broader lesson: Al systems intended for clinical use must be developed and tested with
diversity in mind from the outset. For the NHS serving a population characterised by wide
genetic, ethnic and social diversity this principle is particularly crucial.

5.4 Rigorous Validation Must Extend Beyond Accuracy Metrics

Another key insight was the importance of evaluating models not only statistically but

also clinically. The Gusev Lab demonstrated a commitment to robust validation strategies,
including external testing on independent cohorts, evaluation within specific subgroups such
as CUP patients, and retrospective analyses linking model guided decisions to survival
outcomes. They were also transparent about the limits of the available data, especially in
settings like CUP where ground truth labels are inherently uncertain. This approach
underscores that model performance metrics such as AUC or accuracy are insufficient on
their own; clinical translation requires evidence that models meaningfully influence patient
pathways and outcomes.

5.5 Interdisciplinary Collaboration Enables High Quality Translational Science

Finally, the visit illustrated how effective translational research relies on strong
interdisciplinary collaboration. The Gusev Lab brought together oncologists, statistical
geneticists, ML experts and molecular biologists, each contributing domain specific expertise
while working toward shared research goals. Observing the interaction between these
disciplines highlighted how complex questions such as linking germline risk to somatic
patterns or predicting therapeutic response can only be addressed through sustained cross
specialty communication. This model of integrated team science is essential for developing
Al tools that are biologically coherent, methodologically rigorous and clinically actionable.

On the left is the post-doc from Dr Gusev’s lab, Dr Zeyun
Lu. His work is focused on developing computational
causal inference methods to understand the genetic
architecture of complex diseases. He gave me detailed
insight on the successful predictive modelling in cancer
and diseases




6. Implications for UK Cancer Research, NHS
Genomics, and Al Deployment

6.1 Strengthening My Scientific Perspective

My visit to the Gusev Lab significantly expanded my understanding of how advanced
computational approaches can address persistent diagnostic uncertainties in oncology.
Observing the development and clinical evaluation of tools such as OncoNPC demonstrated
that ML can generate meaningful insight from data sources already embedded in routine
cancer care. This reinforced a crucial shift in perspective: Al should not be treated as an
add-on to existing diagnostics, but as a means of extracting biological and clinical signal that
conventional methods are unable to capture. For complex problems such as cancers of
unknown primary (CUP), this exposure clarified not only the scientific potential of Al, but
the practical ways in which multi-omics, model-based reasoning can improve clinical
decision-making.

6.2 Relevance to UK Cancer Research and NHS Genomics

The visit highlighted clear opportunities for applying comparable approaches within the UK.
The NHS oversees one of the richest national genomic infrastructures in the world, and
initiatives such as Genomics England, the NHS Genomic Medicine Service and UK Biobank
collectively hold the type of germline, somatic and clinical data that made the Boston
research possible. What the UK currently lacks is not data but integration: datasets often sit in
isolation, analysed within discipline-specific silos. The Gusev Lab’s work provided concrete
methodological templates for combining these resources to build more biologically coherent
models whether for refining risk stratification, strengthening early detection efforts or
improving the interpretation of ambiguous or rare cancers. This has direct relevance to the
NHS, where CUP and diagnostically complex cases are routinely managed and where
improved molecular classification could meaningfully change patient pathways.

6.3 Implications for UK Al and ML Development

A further lesson concerns the standards required for responsible Al deployment within
healthcare. The Gusev Lab’s emphasis on transparency, ancestry-aware modelling, rigorous
validation and clinically anchored research offers a framework that the UK can adopt as it
accelerates Al integration. Their work illustrated the necessity of evaluating model
performance across diverse patient groups and producing explicit documentation of cohort
composition practices that are essential for ensuring equitable benefit in a diverse NHS
population. The retrospective survival analyses used to evaluate OncoNPC also set an
important precedent: Al models must be assessed not merely by accuracy metrics but by their
ability to influence meaningful clinical outcomes. These principles align closely with the
UK’s ambitions for trustworthy, safe and clinically relevant Al and should inform national
guidelines, regulatory frameworks and future research investments.



6.4 Personal Research Opportunities and Future Collaboration

The visit also clarified how my own research can evolve considering the approaches observed
in Boston. My interests in tumour microenvironment, immunology and risk stratification
intersect naturally with the Gusev Lab’s strengths in quantitative genetics and causal
modelling. There are clear opportunities for collaborative research, joint method-development
and possible student exchange between King’s College London and Dana-Farber. These
interactions could support the development of UK-specific models that integrate germline
predisposition, somatic evolution and immune dynamics approaches that could meaningfully
contribute to improving risk prediction and treatment stratification within the NHS.

Summary

Overall, my visit to the Gusev Lab reinforced that Al and ML, when embedded within
rigorous biological science and guided by clinical priorities, hold genuine potential to
improve cancer care. The lessons learned on data integration, fairness, validation, and
interdisciplinary teamwork will directly inform my ongoing work and shape my contribution
to the responsible advancement of Al within UK oncology.

7. Recommendations for the UK Based on Learning
from Dana-Farber Cancer Institute

7.1. Develop UK-Specific Al Classifiers for Cancers of Unknown
Primary (CUP)

The success of OncoNPC at Dana-Farber shows that existing NGS panels already used in
routine oncology contain enough molecular signal to meaningfully guide classification and
treatment of CUP.

Specific integrations for the UK

e Genomics England’s WGS & targeted panels — Train UK-specific CUP classifiers
using real NHS tumour and matched-normal sequencing data.

e NHS Genomic Laboratory Hubs (GLHs) — Embed an “Al CUP report” alongside
the standard pathology and genomic reports delivered to MDTs.

e Royal Marsden, Christie, UCLH CUP MDTs — Pilot integration of Al-generated
primary-site predictions into real decision-making.

Example:

A CUP patient whose tumour sequencing indicates a “high-confidence pancreatic-like
signature” could be considered for pancreatic cancer-specific regimens rather than empiric
chemotherapy.



Why these matters:

CUP patients often get no molecularly guided treatment. Al could increase trial eligibility,
improve targeted therapy access, and reduce diagnostic uncertainty.

7.2. Integrate Germline—Somatic Modelling into UK Risk Prediction
and Treatment Planning

Dana-Farber demonstrates that polygenic risk scores (PRS) can meaningfully interact with
somatic mutation patterns to shape tumour behaviour, immune response, and survival.

Specific integrations:

e NHS Breast Screening Programme — Incorporate breast cancer PRS +
mammography findings + somatic ctDNA profiles to create personalised screening
intervals.

e UK Biobank + Genomics England + CRUK TRACERx — Build integrative
models that link germline PRS to tumour evolution trajectories.

e Clinical immunotherapy decisions — Use germline immune-related PRS to stratify
likely responders to checkpoint inhibitors.

Example:

A patient with high inherited risk of melanoma and UV-related mutational signatures could
be prioritised for early dermatology surveillance and immunotherapy eligibility discussions.

Why this matters:

The UK has the data to do this (Biobank, GEL) but lacks integration pipelines.
Dana-Farber provides the proof-of-concept pathway.

7.3. Establish a National UK Multi-Omic Pipeline for Causal Gene
Discovery

Dana-Farber’s TWAS and multi-omic workflows identify causal genes, not just associations.

Specific integrations for the UK:

e CRUK-funded centres — Use TWAS to prioritise causal genes in lung, breast and
colorectal cancer using GEL tumour/normal and clinical metadata.

e NIHR Biomedical Research Centres — Host dedicated multi-omic computational
teams to integrate eQTL, methylation, bulk RNA-seq, single-cell RNA-seq and
clinical outcomes.

e NHS GLHs — Add TWAS-derived gene prioritisation to genomic reports to identify
druggable targets.

TWAS analysis might identify a non-coding variant regulating expression of a DNA -repair
gene driving platinum resistance in ovarian cancer — informing clinical trial stratification.



Why this matters:

This moves UK oncology Al from “predictive associations” to mechanistic insight, enabling
targeted drug development.

7.4. Implement Ancestry-Aware Model Development Across All NHS
Al Tools

Dana-Farber explicitly evaluates Al performance across ancestry groups.

Specific UK applications:

¢ Genomics England — Stratify Al model performance by ancestry for every Al tool
developed within the GMS framework.

e JCVI & NHS Race and Health Observatory — Review ancestry bias in models
deployed in cancer pathways.

¢ Training datasets for CUP, lung cancer, prostate cancer — Ensure Black and
South Asian groups are adequately represented.

In prostate cancer, PRS models trained solely on European ancestry underperform in men of
African ancestry. Dana-Farber’s multi-ancestry fine-mapping strategies could be applied to
NIHR/UK Biobank datasets.

Why this matters:

The NHS serves one of the world’s most diverse populations; Al must work equitably.

7.5. Adopt Dana-Farber-Style Validation Frameworks for NHS
Cancer Al

Dana-Farber’s approach goes beyond accuracy and includes real clinical impact.

Specific UK integrations:

e MHRA & NHS AI Lab — Mandate external validation and outcome-based
evaluation before approval.

e NHS sites deploying AI — Require temporal validation using real-world hospital
data, not only test-set accuracy.

e CRUK clinical trials units — Incorporate Al-guided endpoints (e.g., treatment—
model concordance).

A CUP classifier must show that patients receiving treatment aligned with its prediction have
better survival, as proven in the OncoNPC study NOT just that the model predicts well.

Why this matters:

Most UK Al tools fail due to insufficient validation. Dana-Farber shows what gold standard
validation looks like.



7.6. Build UK Interdisciplinary Cancer Al Teams Modelled on
Dana-Farber’s Structure

Dana-Farber’s success comes from teams where clinicians, geneticists, ML researchers and
molecular biologists work together daily.

Specific UK integrations:

e King’s Health Partners, Manchester Cancer Research Centre, Oxford Cancer
Centre — Establish interdisciplinary “Al in Oncology Units™.

e Joint CRUK-EPSRC centres — Embed cancer biologists and oncologists directly
into ML research groups.

e NIHR training programmes — Fund joint PhD/MD projects co-supervised by
oncologists + computational geneticists.

A lung cancer Al project should include a thoracic oncologist, respiratory pathologist,
statistical geneticist, ML scientist, implementation scientist, and ethical lead.

Why these matters:

The UK currently builds Al in silos; this model does not translate clinically.

7.7. Prioritise Clinically Explainable and Workflow-Integrated Al
Tools

Dana-Farber emphasises explainability and usability for oncologists.

Specific integrations:

e NHS MDT software (e.g., Info Flex, MOSAIQ) — Integrate Al outputs with clear
rationales (“prediction driven by mutational signature SBS4 and KRAS G12D”).

e Oncology training programmes — Establish Al literacy modules for medical
oncology trainees.

e EHR vendors (Cerner, Epic) — Build plug-ins that display Al insights directly
within workflow, not separate dashboards.

Example:
An Al-generated CUP origin prediction should show:

e confidence level
e key genomic features driving the prediction
e treatment pathways associated with that primary

Why these matters:

These builds trust and reduce cognitive burden crucial for adoption.



8. Translational Al in Practice: Visit to the AIML and Professor Lyle
J. Palmer’s Team

8.1. Background and Purpose of the Visit

During my time in Adelaide, I visited the AIML at the University of Adelaide and shadowed
Professor Lyle J. Palmer and his multidisciplinary research team. AIML is one of Australia’s
leading centres for applied ML, bringing together computer scientists, epidemiologists,
clinicians, and public-health researchers to develop Al solutions that address real-world
challenges in healthcare.

Professor Palmer, a Professor of Genetic Epidemiology within the School of Public Health,
and a senior ML researcher at AIML, works at the intersection of computational science and
population health. His research spans translational bioscience, Al applications in medicine,
genetic epidemiology of complex diseases, population biobanking, and life-course
epidemiology. He also leads a clinical and technical Al research unit in Adelaide and serves
as Leader of the Precision Healthcare Flagship for the Australian Alliance for Al in
Healthcare, positioning his work across the key domains of research, clinical translation, and
health-policy development.

The purpose of my visit was to understand how AIML and Professor Palmer’s team design,
evaluate and implement ML tools that are clinically relevant, ethically grounded, and
operationally feasible in real healthcare environments. Specifically, I sought to explore how
AIML integrates population-scale datasets, clinical expertise, and implementation science to
create Al systems that improve diagnostic accuracy, support risk prediction, and optimise care
pathways. Learning from this mature innovation ecosystem was central to my Fellowship
aim: to gather evidence-based insights that can help guide Al-enabled healthcare
transformation in the UK, particularly within the NHS.

8.2. Overview of Professor Palmer’s ML Work

Professor Lyle Palmer’s contributions sit at the intersection of genetic epidemiology,
population health, and applied ML. During my placement at AIML, I observed how his
programme integrates rigorous data science, clinical collaboration, and public-health
infrastructure to address clearly defined health challenges. His work demonstrates how Al
can be responsibly deployed when built upon strong methodological foundations and genuine
clinical need. The following subsections summarise the key themes of his work, what I
directly observed, and why these insights matter for UK healthcare.



On the left is Prof Palmer
during weekly seminar at
AIML. These seminars
showcase research from
different lab groups and are
great way of getting feedback.

8.2.1 Medical ML and Imaging

A significant part of Professor Palmer’s portfolio involves applying ML to imaging tasks
within rheumatology, orthopaedics, and emergency medicine. While shadowing the team, I
observed how AIML develops models for targeted, high-value clinical questions, such as
radiographic scoring in theumatoid arthritis. Clinicians explained that existing scoring
systems are labour-intensive and inconsistent, particularly in early disease. AIML’s

deep-learning models, trained in close collaboration with rheumatologists and radiologists,
were able to identify subtle erosions and quantify joint damage with far greater consistency.
This work exemplified a deliberate strategy: Al is designed to augment clinical accuracy
rather than replace human judgement.

The broader AIML ecosystem has also demonstrated radiologist-level performance for
hip-fracture detection on plain radiographs an area where diagnostic delay has direct
consequences for morbidity. Importantly, these tools were developed with explicit attention to
workflow integration, including how outputs would be presented to clinicians and validated
in real settings.

Relevance to the UK:

The NHS faces severe radiology workforce shortages and growing imaging backlogs. The
AIML model illustrates how targeted imaging Al focused on narrow, clinically relevant tasks
can enhance consistency, speed, and triage efficiency. It highlights that UK deployment
should begin with task-specific, workflow-embedded models, rather than broad, fully
automated diagnostic ambitions.

8.2.2 Predictive Modelling for Chronic Disease

Another major theme in Palmer’s work is the development and evaluation of predictive
models for chronic conditions. His systematic review in The Lancet Digital Health which I
reviewed during my visit provides one of the most rigorous assessments of ML prognostic



models for COPD. The review highlighted widespread weaknesses in published models,
including insufficient external validation, unrepresentative datasets, and methodological
opacity. Discussions with Palmer’s team emphasised that many models fail not because the
algorithms are flawed, but because the underlying evaluation is inadequate.

In follow-on projects, AIML researchers apply stricter standards by subjecting models to
external, temporal and subgroup validation, ensuring that predictions remain reliable across
populations and over time. This methodological discipline was evident in their work on
musculoskeletal disease, chronic pancreatitis and mental health conditions characterised by
heterogeneous trajectories where reliable prediction could meaningfully improve care
planning.

Relevance to the UK:

Many NHS predictive tools used for deterioration, readmission or risk stratification have
struggled with generalisability. The AIML approach demonstrates that robust validation and
transparent reporting are prerequisites for clinical trust and safe deployment. For the UK, this
underscores the need to embed formal evaluation frameworks into national AI governance.

8.2.3 Population Health, Biobanks and Polygenic / Risk Modelling

Professor Palmer’s foundational expertise in genetic epidemiology continues to shape his
current work on risk modelling. During our discussions, he highlighted how linking genomic,
phenotypic, and clinical data enables a deeper understanding of disease pathways across the
life course. His team’s use of biobank-scale datasets illustrated how polygenic risk scores
(PRS) can be integrated with environmental exposures and clinical biomarkers to create
interpretable models that explain why disease develops, not merely predict whether it will.

This work provides a conceptual bridge between population health and precision medicine.
Models that combine inherited and acquired risk factors were shown to improve early
detection strategies and identify subgroups who may benefit from tailored screening or
lifestyle interventions.

Relevance to the UK:

The UK hosts two unparalleled data assets UK Biobank and Genomics England but lacks the
integrated pipelines required to merge these datasets with NHS clinical records. Palmer’s
work provides a blueprint for how the UK could develop national, multi-layered
risk-prediction frameworks to support prevention, personalised screening, and improved
allocation of healthcare resources.

8.2.4 Public Health Data Platforms and Precision Healthcare

A distinctive feature of Palmer’s recent research is his contribution to public-health analytics
platforms capable of supporting real-time modelling across large populations. I reviewed his
contribution to a Nature Medicine correspondence describing how public-health bodies,



data-linkage units and Al specialists co-designed a platform in response to COVID-19. What
stood out was not only the technical capability but the governance model: the platform was
built around transparent data stewardship, interoperability, and public-health accountability.

While at AIML, I learned how these platforms rely on strong national data-linkage
infrastructure something Australia has invested in for over a decade. This enables
longitudinal models of chronic disease, dynamic risk surveillance and system-wide predictive
analytics.

Relevance to the UK:

NHS data remains fragmented across Trusts, EHR systems and regional coding practices.
Palmer’s work demonstrates that Al effectiveness is downstream of data infrastructure. For
the UK to achieve meaningful Al innovation, investment must prioritise national data linkage,
unified coding standards and platform-level governance rather than isolated algorithm
development.

8.2.5 Clinical Collaborations and Disease-Specific Al

Across disease-specific projects, I observed a consistent methodological philosophy: Al is
developed through deep clinical co-design. For example, in the Crohn’s Colitis Cure project,
gastroenterologists guided model objectives, feature selection and interface design. The
resulting tool a web-based Al platform for inflammatory bowel disease was built to offer
interpretable, actionable insights tailored to real clinical workflows.

Similar principles shaped AIML’s work in dental and musculoskeletal health, where models
were chosen not only for accuracy but for their interpretability and clinical usability. The
iterative feedback cycles between clinicians and data scientists were central to the project’s
success.

Relevance to the UK:

Numerous Al projects in the UK fail to translate because they are developed in technical
silos. AIML provides clear evidence that sustained collaboration, clinician-centred design,
and attention to workflow realities are key determinants of adoption. The NHS would benefit
from embedding joint clinical-data science teams to ensure that Al tools solve problems
clinicians genuinely face.

8.3 Fellowship Activities

8.3.1 Visit to the AIML

The AIML, based at the University of Adelaide, is internationally recognised as one of the
leading centres for applied ML research. Its integration within a research-intensive university
and its close partnerships with hospitals, public-health bodies and government agencies create
an environment uniquely suited to translating technical innovation into real-world impact.
This made AIML a strategically important site for my Fellowship, particularly given its



sustained emphasis on developing ML solutions addressing concrete clinical and
health-system challenges.

Unlike many Al research centres that prioritise methodological or algorithmic novelty,
AIML’s medical ML programme focuses on clinically grounded applications across
diagnostic imaging, chronic disease prediction, genomics, computational pathology and
population-health analytics. My placement enabled me to examine not only the scientific
processes behind these projects, but also the organisational structures data governance,
interdisciplinary collaboration, validation frameworks, and implementation strategies that
underpin successful translation into healthcare practice.

My time at AIML consisted of participation in group meetings, research seminars,
project-planning discussions, and individual interviews with researchers and clinicians.
Through these engagements, I gained insight into ongoing projects spanning oncology,
inflammatory bowel disease, rheumatology, musculoskeletal disorders, chronic respiratory
disease and public-health modelling. What emerged was a mature research ecosystem in
which ML scientists, clinicians, epidemiologists and engineers work seamlessly together.
This environment demonstrated how technical expertise, clinical knowledge and
implementation science must coexist to produce Al systems that are robust, clinically
interpretable and operationally feasible.

8.4 Shadowing Professor Lyle J. Palmer and His Team

A central component of the Fellowship was the opportunity to shadow Professor Lyle J.
Palmer, a leading figure in genetic epidemiology, population-health analytics and applied
ML. His research portfolio spanning biobanking, genomic epidemiology, chronic disease
modelling, and Al-enabled precision healthcare places his group at the intersection of
technical innovation and practical implementation. Observing his team provided valuable
insight into how interdisciplinary structures can support high-quality, clinically relevant Al
research.

8.4.1 Research Orientation and Team Structure
Professor Palmer’s team operates across several interconnected domains:

e Deep-learning methods for clinical imaging, particularly musculoskeletal and
rheumatological conditions.

e Predictive modelling for chronic diseases, including COPD, rheumatoid arthritis and
inflammatory bowel disease.

e Genomic and phenotypic modelling, integrating genetic, clinical and environmental
risk factors.

e Public-health analytics and population-scale modelling, including real-time
surveillance platforms.



o Data linkage, harmonisation and quality assurance, enabling the integration of large
and heterogeneous datasets.

o Ethical Al practice, with explicit focus on transparency, fairness and model
explainability.

The group’s working style is highly interdisciplinary. Project meetings routinely involved
clinicians, epidemiologists, statisticians, computational scientists and implementation
specialists. This ensured that each project benefitted from simultaneous input on clinical
relevance, methodological robustness, computational feasibility and future deployment
considerations. The result was a model of practice in which no discipline dominated; rather,
progress depended on continuous negotiation between clinical needs and technical
possibilities.

Special thanks to Prof Lyle Palmer for welcoming me to his lab and giving me the
opportunity to observe various projects from ethical Al to deep learning methods in clinical
imaging.



8.4.2 Key Projects Observed and Their Implications
Radiographic Scoring in Rheumatoid Arthritis

I observed the development of deep-learning models designed to automate radiographic
scoring in rheumatoid arthritis. Traditional scoring is labour-intensive and prone to
inter-observer variation, especially in early disease where erosive changes are subtle. AIML’s
convolutional neural network demonstrated the ability to identify early joint damage that
clinicians may overlook (25,26).

Implications:

e Clinical benefit: earlier detection enables timelier escalation to disease-modifying
therapies, which can prevent irreversible disability.

o Workflow benefit: automated scoring reduces waiting times and supports more
consistent decision-making across sites.

o Relevance to the UK: with significant variation in rheumatology imaging capacity
across the NHS, such tools could promote greater diagnostic equity and efficiency.

Predictive Modelling for COPD

I engaged with work stemming from Professor Palmer’s meta-analysis of ML models for
COPD prognosis. Discussions with the research team highlighted the substantial impact that
cohort selection, coding inconsistency and missingness have on model performance. A model
that performed well internally failed entirely when tested on a neighbouring regional cohort
(27,28).

Implications:
e Generalisation risk is the greatest barrier to clinical adoption.
o External and temporal validation are indispensable for NHS deployment.

o Poor data quality, rather than algorithm choice, is the primary cause of model failure
in real-world settings.

Given the NHS interest in deterioration and readmission prediction tools, this learning
emphasises the need for rigorous evaluation frameworks before clinical implementation.

Public-Health Analytics and Population-Level Modelling

I also examined work on a public-health data analytics platform co-designed with state
agencies for real-time modelling and surveillance. One demonstration showed how the
system predicted ICU demand several days in advance during COVID-19 waves, enabling
earlier operational planning.



Implications:
o Population-level Al is only possible with linked, interoperable data infrastructure.

e Australia’s national approach to data linkage offers a model for potential UK
development.

e The work illustrates that the bottleneck in public-health Al is governance and
infrastructure, not algorithmic capability.

Inflammatory Bowel Disease Decision-Support Tools

A further project involved ML models predicting IBD flares, treatment responses and
complications. Clinicians highlighted how such models could help stabilise variable disease
trajectories by enabling earlier intervention.

Implications:

e Predictive tools shift care from reactive to proactive.

e Interpretability was key to clinician acceptance; the model’s outputs aligned with
known risk factors.

e Within the UK, where emergency IBD admissions remain high, similar tools could
support more personalised pathways.

8.4.3 Methodological Principles Observed
Several methodological principles were evident across Professor Palmer’s projects:
Data readiness as the foundation of effective Al

Up to 70% of project time was dedicated to cleaning, harmonising and validating data.
Implication: Al in the NHS cannot progress without significant investment in high-quality,
interoperable data infrastructure.

Clinical co-design from project inception

Clinicians shaped research questions, model specification and evaluation criteria.
Implication: clinician involvement is essential for trust, relevance and adoption (29).

Multidimensional validation as a requirement, not an aspiration

Internal, external, temporal and subgroup validation were treated as separate steps.
Implication: this approach reduces bias, improves generalisability and ensures equity across
diverse populations.

Deployment and workflow integration treated as scientific work

User-testing, workflow mapping and post-deployment monitoring were integral to the
research process (30).



Implication: success depends not only on model performance but on how well the tool fits
into clinical practice.

Ethics, fairness and transparency embedded throughout

Bias testing and model-explainability strategies were standard components of development.
Implication: sustained public trust requires ethical governance at every stage of the Al
lifecycle.

8.4.4 Cross-Cutting Themes Emerging from the Visit

Several themes recurred throughout my time at AIML:
1 High-quality data is the primary determinant of Al success

Projects succeeded when supported by complete, harmonised and well-curated datasets.
Implication: UK health data remain fragmented; AI will not scale without national-level
investment in interoperability.

2 Clinical relevance is more important than technical novelty

Successful projects were those grounded in clinician-defined needs.
Implication: the UK must avoid “technology-driven” Al and prioritise co-production with
clinicians.

3 Interdisciplinary teams accelerate translation

Clinicians, engineers and epidemiologists collaboratively shaped projects from the outset.
Implication: similar interdisciplinary models are needed across UK institutions.

4 Implementation science is integral to AI adoption

Projects were designed with deployment in mind, not as an afterthought.
Implication: the NHS must invest in implementation-science capacity to support digital
transformation.

5 Ethics, equity and governance underpin trustworthy Al

Bias assessments and transparency documentation were routine.
Implication: governance must be embedded, not optional.

6 Evaluation extends beyond accuracy metrics

Success was measured by usability, workflow fit, equity impact and real-world performance.
Implication: UK evaluation frameworks must adopt broader measures of clinical utility.



8.4.5 Reflections on the Australian Context

Australia proved an excellent environment for learning about translational Al. The healthcare
challenges facing Australia closely resemble those in the UK, including rising chronic-disease
prevalence and workforce constraints. Yet Australia’s investment in national data linkage,
structured interdisciplinary collaboration and applied Al hubs such as AIML provides
valuable insights for the UK’s future digital-health strategy. The combination of
methodological rigour, clinical partnership and system-level thinking offers a compelling
model for the NHS as it seeks to embed Al safely and effectively across clinical pathways.

I had the opportunity to present my findings and key observation from AIML visit at weekly
seminar at AIML.

9. Findings from the AIML learning

9.1 Data Readiness as the Foundation of Effective Al

One of the strongest findings from my time at AIML was the overwhelming importance
placed on data quality, completeness and interoperability. Almost every project meeting
began not with algorithm design but with detailed reviews of data harmonisation, linkage
procedures, and validation pipelines. In a COPD prognostic modelling project, for example,
the research team spent several weeks reconciling inconsistencies between GP records,
hospital admission datasets and spirometry data stored in a legacy respiratory system.
Seemingly minor discrepancies such as variation in coding for smoking status, or differences
in how comorbidities were recorded across hospitals had meaningful downstream effects on
model performance. The team demonstrated how an initially “high-performing” model



deteriorated significantly when applied to a dataset from a neighbouring health service,
purely due to coding inconsistencies and missing patterns. This highlighted that robust Al is
not simply a function of better algorithms but of high-quality data infrastructure built on
systematic curation and standardisation.

So what does this mean for the UK?

The NHS holds one of the world’s richest health-data resources, yet fragmentation between
Trusts, inconsistent coding practices and limited interoperability prevent its full utilisation.
AIML’s approach demonstrated that without sustained investment in data engineering data
linkage, standardised pipelines, metadata quality checks Al deployment will remain restricted
to isolated pilots with no realistic path to scale. This lesson is directly relevant to national
initiatives such as the Federated Data Platform and NHS Al Lab evaluation programmes: if
data foundations are not strengthened, even the best models will underperform or risk harm
when deployed across diverse UK populations.

9.2 Clinical-Problem-First Approach Drives Adoption

A defining feature of AIML’s medical research portfolio was its insistence that all Al work
begin with a clinically articulated problem, not a technological opportunity. Projects were
initiated only once clinicians had clearly defined a bottleneck within their workflow. This was
exemplified in the rheumatoid arthritis radiographic scoring project. Rheumatologists
explained that early erosive changes critical for treatment escalation were difficult to detect
consistently and contributed to variation in patient management. AIML designed a
deep-learning model specifically to address this task, rather than attempting a broader, less
clinically anchored diagnostic tool. The precision of the problem definition shaped every
stage of development, from image pre-processing to model output design, ensuring that the
tool aligned with the existing PACS workflow and Ritchie scoring system familiar to
clinicians.

A similar process was evident in AIML’s inflammatory bowel disease (IBD) predictive tools.
Clinicians expressed concern about unpredictable flare patterns and the resulting emergency
admissions. The team developed prognostic models that not only predicted flare risk but
presented risk scores in a way that clinicians felt reflected meaningful shifts in disease
trajectory. These examples reinforced that clinically led prioritisation results in tools that
clinicians trust and integrate into practice because they address real frustrations and unmet
needs.

So what does this mean for the UK?

Many NHS Al pilots fail because technology teams define the problem rather than clinicians.
AIML’s model shows that clinician ownership from the outset is essential to produce tools
that are adopted, not abandoned. For NHS programmes aiming to introduce Al decision
support whether for imaging, triage, chronic-disease management or genomics embedding
clinical partners in project design is not optional but foundational.



9.3 Rigorous Evaluation and External Validation Are Essential

AIML’s commitment to evaluation exceeded typical academic practice, treating validation as
a multi-stage scientific process akin to clinical trial methodology. In discussions around a
COPD prediction model, the team demonstrated how internal validation alone produced
deceptively high performance. However, when the model was applied to an external cohort
from a neighbouring region, accuracy deteriorated sharply. Through a structured evaluation
process including external validation, temporal validation across different years, and
subgroup analysis the team identified why the model failed: differences in local coding
practices, variations in patient socioeconomic profiles, and different spirometry calibration
procedures.

Crucially, AIML did not treat this finding as a failure but as an essential diagnostic step. Such
rigorous evaluation enabled the team to recalibrate the model, refine inclusion criteria, and
identify where further data engineering was required. The level of scrutiny extended to equity
considerations: performance was routinely stratified by demographic factors such as age and
comorbidity load to identify unintended biases early in development.

So what does this mean for the UK?

Many Al tools entering NHS clinical trials or procurement pipelines remain inadequately
validated beyond their development cohort. AIML’s approach highlighted that without
external and temporal validation, Al models may perform unpredictably when applied to new
settings, risking inequitable or unsafe outcomes. The UK’s adoption of Al assurance
frameworks must include mandatory multi-layered validation to avoid real-world
performance collapse.

9.4 Interdisciplinary Collaboration Is Critical for Translation

Another striking observation from AIML was the depth of interdisciplinary collaboration.
Project meetings routinely brought together clinicians, epidemiologists, ML researchers,
statisticians, geneticists, software engineers and implementation scientists. During an IBD
modelling session, for example, a gastroenterologist defined the clinical meaning of flare
events, a statistician interrogated confounders and model assumptions, a data scientist
analysed missingness structures in biomarker datasets, and an implementation specialist
assessed whether the model outputs could realistically be integrated into clinic workflows.
The design decisions reflected the collective input of all stakeholders rather than any single
discipline.

This interdisciplinary model ensured that tools remained clinically grounded,
methodologically robust and practically deployable. It also removed disciplinary blind spots
that often undermine Al translation such as clinicians underestimating data limitations or
technical teams overlooking workflow constraints.

So what does this mean for the UK?
Many NHS Al initiatives are limited by siloed organisational structures. Technical teams



often work separately from clinical teams, and implementation staff are brought in only at the
end of a project. AIML showed how interdisciplinary alignment must exist throughout the
project lifecycle. Establishing cross-functional Al hubs within the NHS combining clinical,
data-science, informatics, governance and implementation expertise would dramatically
increase the likelihood of sustainable adoption.

9.5 Implementation Science Is a Core Scientific Discipline

AIML demonstrated that deployment is not something that happens after a model is built;
rather, implementation is treated as an integral part of scientific design. For example, during
the pilot of the rheumatoid arthritis scoring tool, user-testing sessions revealed that
radiologists preferred confidence-interval outputs rather than binary classifications. Workflow
mapping identified points where the tool could reduce reporting time without increasing
cognitive burden. Training materials were iteratively adapted after observing how junior
clinicians interpreted the model’s heatmaps. Finally, model-drift monitoring procedures were
built into the deployment pipeline to ensure the system remained reliable over time.

These activities were not framed as auxiliary tasks they were central to the research process,
and outcomes from implementation testing were presented alongside model-performance
results in project meetings.

So what does this mean for the UK?

Many Al deployments in the NHS fail because tools are introduced without sufficient
workflow redesign, training or monitoring. AIML’s example shows that successful adoption
requires dedicated implementation-science expertise, resourced over the long term. Without
this, even highly accurate tools can impede workflows or fail to gain clinician trust.

9.6 Ethics, Fairness and Transparency Are Embedded Throughout the Pipeline

Finally, AIML’s development pipelines included explicit steps for fairness testing,
transparency documentation and ethical justification. In the rheumatoid arthritis model, early
results revealed reduced performance in older patients with existing joint deformities. Rather
than suppressing this limitation, the team revisited the training dataset to correct
under-representation, adjusted pre-processing procedures, and openly documented the
residual bias. Fairness analyses were treated as scientific findings, not compliance exercises.
Discussions frequently touched on patient trust, model explainability and responsible use of
predictive outputs.

So what does this mean for the UK?

Public confidence in NHS Al will depend on transparent communication of risks, limitations
and fairness assessments. AIML demonstrated that embedding ethical scrutiny throughout
model development not only at approval stages is essential for safe, equitable Al.



10. Recommendations

The successful integration of Al and ML into healthcare requires coordinated action across
policy, organisational structures, research ecosystems, and frontline clinical practice. Lessons
from Australia and the United States show that meaningful progress is only possible when
health systems invest in strong data foundations, interdisciplinary capability, ethical
governance, and clinically driven innovation. The following recommendations outline a
strategic roadmap for the UK and NHS, informed directly by the practices, infrastructures
and cultures observed during this Fellowship.

10.1 Recommendations for UK Policymakers and National Health Bodies

10.1.1 Invest in National Data Infrastructure

Across both AIML and Dana-Farber, high-performing Al depended on well-linked, clean and
interoperable datasets. Australia’s national data-linkage capabilities and the structured
pipelines used in cancer genomics in Boston enabled research teams to combine imaging,
genomics, clinical records, pathology and population-health data seamlessly (31). The UK
must adopt a similar strategic approach.

Recommendations:

e Develop or expand unified national data platforms integrating imaging, EHRs,
pathology, genomics, prescribing and outcomes.

o Introduce mandatory interoperability standards to ensure consistent data structures
across Trusts.

e Provide long-term funding for data-engineering teams to maintain data quality and
governance.

Why this matters:
Without high-quality data infrastructure, Al tools will remain limited to small pilots and will
not generalise safely across the NHS.

10.1.2 Establish Clear, Proportionate Al Regulation and Governance

Both Australia and Boston used transparent, practical frameworks for Al evaluation including
fairness audits, model-card-style documentation, and post-deployment monitoring. The UK
requires similarly robust but enabling regulation.

Recommendations:

e Develop national standards for validation (external, temporal and demographic),
fairness assessment and model drift detection.

o Promote consistent documentation requirements, including provenance of training
data and model limitations.



o Support regulatory sandboxes to safely executes software or code without affecting
the main system. Allowing safe real-world evaluation of emerging technologies.

Why this matters:
Governance that balances safety with innovation will accelerate adoption while protecting

patients and maintaining public trust (32).

10.1.3 Prioritise Ethical and Equitable Al Adoption

The fairness-first culture observed at both AIML and Dana-Farber where biases were
proactively identified and corrected demonstrated the need for ethical scrutiny as a core part

of model development.
Recommendations:
e Require demographic fairness audits before NHS deployment.

o Ensure that national training datasets include adequate representation of minority and
underserved groups.

e Promote explainability standards so clinicians can understand and safely act upon Al
outputs.

10.2 Recommendations for NHS Organisations and Integrated Care Boards

10.2.1 Adopt a Clinical-Problem-First Approach

Al tools succeed when they address a specific, clinician-defined need. AIML’s projects in
rheumatoid arthritis scoring, COPD prognosis and IBD flare prediction all began with clear
clinical problems, not technological curiosity.

Recommendations:
o Identify clinical bottlenecks collaboratively with frontline teams.

o Prioritise Al initiatives where improvements in diagnosis, triage, backlog reduction or
risk prediction can directly support patient care.

e Avoid procuring Al tools that lack clear clinical value or workflow alignment.

10.2.2 Build Cross-Disciplinary Al Teams

AIML’s success depended on stable, interdisciplinary teams where clinicians, ML scientists,
statisticians, epidemiologists, and implementation specialists worked side-by-side.

Recommendations:

o Establish NHS-embedded Al teams bringing together clinical, technical, analytics,
informatics, and implementation expertise.



e Provide protected time for clinicians to contribute to Al projects.

e Develop hybrid clinical-Al roles to support long-term capability.

10.2.3 Embed Implementation Science into Digital Transformation

Implementation was treated as a scientific discipline at AIML, using workflow mapping,
usability testing and iterative refinement before and after deployment.

Recommendations:
e Incorporate structured pilot phases with clear evaluation metrics.
e Undertake human-factors testing, workflow redesign and training before deployment.

e Implement live monitoring of Al performance, including drift detection and feedback

loops.

Even highly accurate models fail if they are not usable, trusted or well-integrated into

daily clinical practice.
10.3 Recommendations for Academic Institutions and Research Groups

10.3.1 Prioritise Rigorous Methodology and External Validation

Both AIML and Dana-Farber demonstrated that models tested only within their development
dataset perform poorly in new contexts.

Recommendations:
e Secure external validation datasets, ideally across multiple NHS regions.
e Conduct temporal, subgroup and demographic validation analyses as standard.

e Ensure reproducibility through transparent pipelines, code release and documentation
(33).

10.3.2 Strengthen Training for Clinical Al Literacy

Globally, the most effective teams included clinicians who understood ML fundamentals and

data scientists who understood clinical workflows.
Recommendations:
o Integrate Al literacy into undergraduate, postgraduate and clinical training.

o Develop interdisciplinary modules bridging statistics, ethics, informatics and clinical

decision-making.

e Create joint programmes in clinical Al, modelling and population health.



10.3.3 Encourage Co-Development with Health Services

Al research must be aligned with real NHS needs if it is to translate effectively.

Recommendations:
o Co-design research programmes with NHS partners.

Develop tools that are technically feasible within NHS digital architecture.

o Shift research incentives towards clinical impact, not only publications.

10.4 Recommendations for Al Developers and Industry Partners

10.4.1 Focus on Transparency and Explainability

Healthcare Al requires clarity on model training, assumptions, limitations and intended use
(34).

Recommendations:

e Provide open, comprehensible documentation for clinical users.
e Develop explainability outputs that clinicians can interpret safely.

e Ensure transparency around model updates and version control.

10.4.2 Align Tools with Real Clinical Workflows

AIML’s ethnographic observation and workflow analysis demonstrated how usability
determines adoption.

Recommendations:

e Observe real clinical environments before building tools.

Test prototypes early with clinicians and revise based on feedback.

e Minimise cognitive burden and avoid adding extra steps to workflows.

10.4.3 Commit to Long-Term Monitoring and Maintenance

Models degrade over time as clinical practice changes.

Recommendations:

Implement systems for drift monitoring, recalibration and safe updates.

e Provide long-term technical support to clinical partners.



e Maintain version-tracking and auditability.
10.5 Recommendations for Clinicians and Healthcare Professionals
10.5.1 Engage Early in Co-Development
Clinician involvement is essential for trust, safety and usability.
Recommendations:

o Participate in defining clinical use cases for Al.

e Co-produce tools and workflows with data scientists.

e Provide iterative feedback during testing and evaluation phases.

10.5.2 Develop Skills in Digital and Al Literacy

Observations from AIML and Dana-Farber highlighted how empowered clinicians accelerate

safe adoption.
Recommendations:
e Access training in ML basics, data governance and ethical Al
e Learn to interpret Al outputs and recognise limitations.
e Understand when Al should not be applied.
10.5.3 Advocate for Patient-Centred Al Adoption
Clinicians are essential for communicating with patients and maintaining public trust.
Recommendations:
o Explain clearly how and why Al tools are being used in care.
e Support informed consent and shared decision-making.

e Monitor and report inequities in Al-assisted pathways.

11.0 Conclusions

11.1 AL, System Design, and Interdisciplinary Collaboration

Across both sites, it became clear that the successful introduction of Al in healthcare depends
on designing systems that reflect the realities of clinical practice. Effective tools were those
built through close collaboration between clinicians, data scientists, engineers, geneticists and
ethicists, ensuring that technical solutions aligned with user needs and ethical expectations.
The Fellowship demonstrated that interdisciplinary structures are not optional; they are
fundamental to producing Al that is clinically relevant, safe to use, and capable of improving
patient outcomes. For the UK, this highlights the need to develop integrated design processes
that embed clinical insight, governance considerations and implementation expertise from the

outset.



11.2 Population-Level Al and the Role of Data Infrastructure

The Australian experience illustrated how strong data foundations enable Al to contribute
meaningfully to population health. High-quality linkage, consistent coding practices and
well-established governance processes allowed researchers to apply ML methods to
large-scale datasets for surveillance, prediction and service planning. These capabilities
enabled analysis of chronic illness trajectories, early detection opportunities and
health-system demand. The UK already holds exceptional datasets, but unlocking their full
potential will require greater interoperability and investment in robust, sustained data
engineering. The Fellowship confirmed that population-level Al is achievable only when
supported by mature national infrastructure.

11.3 Al for Clinical Decision Support and Personalised Care

In clinical oncology settings, Al showed clear value in supporting diagnostic clarity,
predicting treatment response and enhancing risk stratification. Models such as OncoNPC
demonstrated how ML can guide decision-making in complex scenarios particularly when
conventional diagnostics reach their limits. Similarly, models for imaging interpretation and
chronic disease prognosis showed how Al can reduce variation and offer more consistent
insights. The unifying lesson across both Boston and Australia was that AI must augment, not
replace, clinician expertise. For the NHS, this underscores the importance of focusing future
development on tools that are interpretable, clinically anchored and evaluated within
real-world workflows.

11.4 Ethics, Equity and Responsible Deployment

The Fellowship highlighted important ethical considerations associated with Al adoption,
including ancestry bias, transparency, explainability and public trust. These issues are
especially relevant in genomics-driven oncology, where imbalanced datasets can contribute
to unequal model performance across patient groups. Both institutions I visited were actively
addressing these challenges through systematic validation, fairness analysis and clear
communication around data use. For the UK to adopt Al responsibly, equity and ethical
governance must be integrated throughout the model lifecycle. This includes ongoing
monitoring, transparent reporting and meaningful engagement with patients and the public
about how Al systems operate and how their data are used.

12.0 My Achievements

Following completion of my Fellowship travels across USA and Australia, I have focused on
consolidating the skills, learning and networks developed during my time abroad. The
Fellowship accelerated my professional growth as a clinical academic in cancer research and
artificial intelligence, enabling me to expand my research portfolio, secure new funding
opportunities, strengthen international collaborations and disseminate my learning widely
across academic and clinical communities. This section summarises my key achievements to
date.



12.1 Awards and Funding Successes

King’s Prize Fellowship in Artificial Intelligence (2025-2027)

One of the most significant achievements following my Fellowship was applying for the
prestigious King’s Prize Fellowship award, focused on applying Al to cancer risk prediction
and decision support. The insights gained from both Dana-Farber Cancer Institute and AIML
particularly around data integration, model evaluation, and clinical codesign were
instrumental in shaping a competitive proposal and articulating a clear programme of
translational Al research.

This Fellowship will provide:

e Protected research time to advance ML models for tumour microenvironment analysis
and immunogenomics

e Access to interdisciplinary Al expertise across King's College London

e A platform for establishing UK-US—Australia collaborations that originated from my
Churchill travels

12.2 International Research Collaborations

My visits to Dr Alexander Gusev’s Lab (Dana-Farber) and the AIML resulted in ongoing
and emerging collaborations that continue to shape my research direction.

Collaborations established include:

e Joint methodological discussions with the Gusev Lab, exploring applications of
germline somatic modelling and CUP classification tools (e.g., OncoNPC) in UK
datasets.

e A developing partnership with Professor Palmer’s team focused on applying
implementation science and rigorous ML evaluation methods to cancer prediction
models.

e Cross-institutional dialogue on building multi-omic risk models in
immuno-oncology, with opportunities for future student exchanges and exploratory
grant applications.

These collaborations not only enrich my academic work but also support the translation of
international best practice into the UK setting.

12.3 Scientific Outputs and Publications

Work generated from the Fellowship has contributed to several publications and manuscripts
currently in development. These outputs draw on the methodological advances observed at
Dana-Farber and AIML, including:

e Application of multi-omic integration for cancer risk prediction

e ML approaches to immune microenvironment characterisation



e Evaluations of fairness, bias and model drift in oncology Al tools
e Conceptual frameworks for implementing Al safely within NHS cancer services

Once published, these will form a significant component of the emerging UK knowledge base
on Al in oncology.

12.4 Presentations and Dissemination Activities

My Fellowship findings have been shared widely across academic, clinical and Al
communities. Notably:

ESMO AI in Oncology Conference (2025)
I presented work informed directly by my visits to AIML and Dana-Farber, focusing on:

e Lessons learned from international leaders in Al-driven cancer research

e Clinical utility of ML classifiers such as OncoNPC in cancers of unknown primary

e Implementation science approaches essential for Al adoption in the NHS
This presentation was highly impactful, reinforcing the relevance of my Fellowship to
global oncology discourse (see appendix for the full details of the poster).

ES10 ONCOLOGY JOURNALS

Above is the poster presentation that was accepted to at ESMO 2025 Al and digital
oncology conference in Berlin. I also had an e-poster which was accepted and displayed
in the podium.



Additional invited talks and workshops include:

e Presentations within King’s College London cancer research programmes

e Seminars for NHS cancer networks exploring responsible Al adoption

e Contributions to Al-policy roundtables and digital health innovation groups
Through these, I have helped raise awareness of both the opportunities and limitations of Al
in cancer research, translating complex concepts into practical insights for clinicians,
researchers and health leaders.

12.5 Development of New Research Networks

Inspired by multidisciplinary models at AIML and Dana-Farber, I have contributed to
building new collaborative structures within the UK, including:

e Early development of a Cancer AI Implementation Network, connecting Al
researchers, clinicians, and data governance experts

e Ongoing discussions with NIHR and cancer alliances to establish a UK-focused Al in
Oncology Working Group

e Strengthening ties between King’s, UK NHS Trusts, and international partners to
enable shared datasets, joint grant proposals and translational projects

These networks will be critical for moving UK oncology Al from research into practice.

13.0 My Future direction

The Churchill Fellowship has been transformational for my professional development,
expanding both the depth and direction of my research in Al-enabled oncology. The
opportunity to work alongside leading scientists at Dana-Farber Cancer Institute and Harvard
Medical School and with Professor Lyle Palmer’s team at the AIML provided an unparalleled
international perspective on how ML can be responsibly and effectively integrated into
clinical practice, cancer research, and population-health decision making.

My next steps focus on translating these global insights into meaningful impact for UK
patients, clinicians and research communities.

13.1 Advancing Research on Al for Cancer Risk, Diagnosis and Precision
Medicine

Building on the expertise gained from USA and Australia, my immediate aim is to deepen
research into:

e Al-driven risk prediction models integrating germline, somatic and clinical features.

e ML tools for tumour microenvironment profiling, including immunological
signatures.

e Model evaluation frameworks suitable for real-world NHS contexts, including
temporal drift testing and fairness assessments.



I will continue developing collaborations with Dana-Farber’s computational oncology teams
and AIML’s public-health analytics researchers, focusing on cross-institutional model
validation, a noted gap in current UK Al development.

13.2 Delivering My King’s Prize Fellowship Programme

The Fellowship learnings directly supported my application for the King’s Prize
Fellowship award, where I will lead the programme that applies advanced ML techniques
to improve cancer diagnostics and immunotherapy stratification. This work will
incorporate:

e Multi-omic integration inspired by Dr Gusev’s methodologies.
e Population-level modelling approaches adapted from Professor Palmer’s work.
e Implementation-science frameworks observed at AIML to support NHS
deployment.
This programme will become a major platform for embedding responsible Al practice
within UK cancer research.

13.3 Dissemination and International Knowledge Sharing

A core responsibility of the Churchill Fellowship is dissemination. I have already begun
sharing findings through high-profile scientific and clinical forums, including presenting
Fellowship-informed work at the ESMO AI and Oncology Congress, with further invited
talks planned at national and international symposia.

Future dissemination activities will include:

e Peer-reviewed publications on CUP classification, germline—somatic modelling and
implementation science for Al

e  Workshops with NHS teams on Al readiness and evaluation standards.

e Engagements with UK research funders to improve structures for multi-disciplinary
Al research.

13.4 Building Capacity and Networks in UK Clinical Al

The Fellowship reinforced the need for hybrid expertise across clinical, data-science and
population-health domains. My next steps include:

e Establishing a cross-faculty Al in Oncology Working Group at King’s to bring
together clinicians, statisticians, computer scientists and ethicists.

e Supporting development of clinical Al literacy through training sessions, seminars
and mentoring.

e Contributing to national conversations on Al governance through NHS England,
NIHR and professional societies.

This work aims to ensure the UK develops a workforce capable of leading safe, equitable and
impactful Al adoption.



13.5 Future Research Directions

The Fellowship has defined several strategic priorities that will shape my next phase of
research in Al-enabled oncology. A central focus will be evaluating the clinical utility of
models such as OncoNPC within UK cancer datasets, particularly for cancers of unknown
primary. Applying these tools to diverse, multi-ancestry NHS populations will help determine
their generalisability, fairness, and potential for integration into UK clinical pathways.

Building on insights from both Dana-Farber and AIML, I will advance work on
multi-ancestry ML methods to ensure that predictive models perform equitably across the
UK’s diverse population. In parallel, I will explore Al for early cancer detection, using
multimodal approaches that combine genomics, imaging and clinical data to identify
high-risk individuals earlier and support more personalised surveillance strategies.

A further research priority will be addressing the ethical, governance and equity dimensions
of Al in oncology, including transparency, patient trust and the risk of algorithmic bias. These
themes emerged consistently across both international visits and will underpin future
programme design.

To underpin this scientific trajectory, I will apply for major UK career development awards,
including the MRC Career Development Award and the Wellcome Trust Early-Career. These
will support the establishment of an independent research programme focused on multi-omic
modelling, robust Al evaluation, and translational genomics directly informed by the
methodological and implementation insights gained during the Fellowship.

Together, these research directions aim to help position the UK as a leader in responsible,
clinically meaningful Al for cancer care.

14.0 Concluding Remarks

This Fellowship has been genuinely transformative professionally, academically and
personally. It offered the opportunity to learn from world-leading centres that are not simply
building cutting-edge algorithms but are reshaping how Al can be safely embedded into
healthcare systems. The insights gained illustrate that the future of Al in oncology will
depend not only on technical innovation, but on data infrastructure, interdisciplinary
collaboration, ethical governance and meaningful engagement with clinicians and patients.

The Churchill Fellowship has strengthened my belief that the UK has the talent, clinical
datasets and institutional capability to lead in this space provided we commit to the right
foundations. I am deeply grateful for the opportunity to undertake this work and look forward
to building on these experiences to help advance responsible, equitable and patient-centred Al
adoption within UK cancer care.

Thank you for reading this report. I hope it contributes to national efforts to harness Al in
ways that improve diagnosis, personalise treatment and ultimately enhance the lives of people
affected by cancer.



I extend my deepest thanks to my husband for his unwavering support, love, and
encouragement throughout this journey. His constant presence transformed what could have
been a demanding and challenging period while caring for our four-month-old at the start of
the Fellowship and continuing through to now, into an experience that was deeply meaningful
and profoundly rewarding.
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18P: ImmCellTyper: An Al-Empowered Framework for Comprehensive CyTOF Immune Pro

Maryam Arshad | ling Sun, Shahram Kordast'
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Background
=CYTOF |Mass Cytometry) allows measurement of 40+ markers per single cell,
providing detailed immune profiles.
=However, the data is high-dimensional and complex, making manual gating [the
traditional method) slow, subjective, and hard to reproduce.
=Existing computational methods fzll into twio categories:

= Unsupervised clustering (liks flowson, Phenogroph): data-driven but can
misclassify biologically simnilar populations.

= 5 sup {like LOA, DeepCyTOF, SCINA): accurats
but require labor-intensive training data and struggle to find new cell types.

Methods
- Implemented in R {https://github_com/JingAmyaSun/ImmCellTypar)
- Waorkflow:
1. Batch correction {CytoMorm, CytofRUV)
2. Data OC and preprocessing
3. Semi-supervised classification [BinaryClust)
4. Subpopulation discovery [Phenograph, flowS0OM)
5. Differential marker analysis
- Validatad on MPN, Influenzz, and COVID-19 datasets (>7M cells).

Results

BinaryClust was tested on several datasets (MPHN, Influenza, 2nd

COVID-13)

*  Matched manual expert gating with near-perfect correlation (R
~0.56-1.0)

*  Outperformed flowSOM in accuracy (F-measure 0.94 vs 0.75)

Ran faster than both flowS0A and LDA on large datasets

Maintained reproducibility and biological interpretability

Figure &

of the
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+Handlas multiple study groups statistically (e.g., Kruzka—
Wallis, Dunn’s test)
+Generztes publication-ready visualizations

i Limitations
*Assumes binary marker distributions [may struggle with gradient expressions)
#Uszers must still define major marker patterns manuslly
=Semi-supervised step might not detect unknown populations automatically




170&P: Al as a Second Reader in Mammography: Multi-Millien Image Training, Validation Across Populations, and NHS Integration Potential
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Aim: To evaluate whether Al algorithms for reading screening mammagrams are acourate
and benefidal enough ta be intreduced into the UK MHS Breast Screening Programme
[MHSBSF).

Backg) d : artificial i e (Al] is rapidly advancing breast cancer screening by
enhancing diagnostic accuracy, improving consistency, and supporting workload
manzgement within the MHS Breast Scresning Programme (BSF). Using desp learning
trained on millions of annotated mammograms, CE-marked &) systems such as Transpara,
HealthMammo, and ProFound Al can detect subtle imaging festures beyond human
perception. Despite promising retrospective results, large-scale adoption remain limited
by infrastructure challenges and the lack of prospective, Uk-based validation to confirm
real-world dinical benafit and cost-effectivenass.

Figure 1. 3chematic overview of the breast screening workflow

Roles of Al in the Breast Screening Pathway
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Methods: Electronic databases (MEDLIME, Embase, Cochrane Library) were searched to
2022, identifying 4,969 records.

After screening and eligibility assessment, 11 publications (B unique studies) met
inclusion criteria addressing:

(1) diagnostic acouracy of Al for breast cancer detection, and

(2} cliniczl impact within screening workflows.

Data were extracted using standardised templates and quality-assessed with QUADAS-2,
focusing on study design, bias, and applicability to the MHS Breast Screening Programms
(BSP).

Figure 2. S5earch and Selection Process & Review Questions

Srudy selection Flow dlageam Ky rewiew questions

| @1 Disgnosiic Accuracy
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Limitations:

‘The review was conducted as 2 rapid evidence summary, not a full systematic review, which may have intreduced selection and appraisal bias. Only 3 subsst of
studies underwent double dats-checking, and citation searches may hawe missed relevant publications.

Al included studies were retrospective, non-UK, 2nd based on enriched datasets, limiting ger is=bili
workflows were found.

naany studies lacked predefined thresholds, invohved manufacturer-linked data, or were conducted in laboratory settings, reducing clinical applicability.

Results

) piagnostic Accuracy [Q1)
7 retrospective studies evalusted Al-bassd mammography reading systems.
Mo prospective or UK-based studies identifiad.
Al glgorithms often achisved comp or higher ity than 3 single
human reader, but performance was *lower than souble-reaging consensus.
Studies generally used enriched datasets (higher cancer pravalance], likehy
inflzting accuracy estimatess.
specificity and recall rates varied widely betwesn studies (range: 55-96%).
Bias risk: High, dus to retrospective design, non-representative populations,
and selective case sampling.
commercial tools assessed included Transpara, Lunit INSIGHT MMG, Mia
{Kheiron), and ProFound Al
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uptake, or downstream resource use.

Mo UK implementation data availzble for workflow integration or
interoperahility with MHE PACS systems.
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Prespective UK validation nesdad
Mo RCT: ar real-warld evalistian
Eariched test sets, fimited demograhics

Figure 3. Dizgnostic Accuracy of Al vs Human
Readers in Screening Mammography

o b ety st
Poatfus Bateefor M) aed Vaymar.
Fitors

Figuss 3. Facabver a3

g characinrisiic

;o . - Key Results: Al as a Reader Aid

et st 1, e mrage of g
[o———
araily murhad ar gty
ingind seat ey Bt

Figure 4. Performance of Al Resder-Aid Systems in Mammography Studiss

Figre 4. Samrasy of thres snriched
[ p———
raci 11 gL 1

My rmeren,

B8 et | o 73 et | - wigrateans
Eriched | 122 a2 Sarasnry T e,
e i sovcncRy | oruliaki by i RS screerig

Mo prosg real trials of Al in screening

overzll, the evidence is 1 and rically weak, and findings may not directly translate to MHS breast screening practice.
Full-taxts sssasead for sligitiliy n a2 Q Gz Canical Impact . -
Wit s o
! hatrns of irtraducing Al inba Al offers strong potential to enhance breast cancer screening through improved accuracy References:
Sbadios included Ereast Cancer screaning and workflow efficiency. L

(e 11 ptibcations: § uniou shades]
-1 diagnostic accuracy
= B ehnical ublity

e ovoriapi v n
L d R
Pariel & 440y skoction o diagriam sinddieas bes by questions-vessus 3 accrmrn, | daniui st}
82 disgrasaucy, B oinical ity suvive

wensidlown T

Farat &; Shudly sbiction Fow disgram wamsding i es
ol

Howevar, existing evidence—mainly retrospective, non-UK, and based on enriched
datasets—is insufficient for MHS adoption.

Among CE-marked tools, Transpara shows grestest readiness, but UK-based prospactive
walidation remains essential.

[Future ressarch should evaluate real-world performance, cost-effactiveness, and
integration within MHS workflows to ensurs Al delivers safe, equitsble, and evidence-bassd
b=nafits in population breast scresning.
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